网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
多向压缩与退火处理对TA2工业纯钛力学性能的影响
英文标题:Influence of multi-directional compression and annealing treatment on mechanical properties for TA2 industrial pure titanium
作者:陈荣友1 2 莫俊财1 2 赵小莲1 2 3 梁维1 2 黄岳雨1 2 宋洋1 2  郭书博1 2 韦春华1 2 3 
单位:1.广西大学 省部共建特色金属材料与组合结构全寿命安全国家重点实验室 2.广西大学 资源环境与材料学院 3.广西大学 广西高校高性能结构材料及热表加工重点实验室 
关键词:TA2纯钛  多向压缩  退火处理  抗拉强度  断口形貌 
分类号:TG319;TG166.2
出版年,卷(期):页码:2024,49(4):214-218
摘要:

 为改善TA2纯钛的力学性能,对粗晶TA2纯钛试样进行多向压缩和退火处理,通过透射电镜微观组织观察、纳微压痕硬度测试、室温拉伸测试及扫描电镜断口形貌观测等手段,对比了粗晶试样、多向压缩试样和不同温度退火试样的组织、硬度、拉伸性能及断口形貌。结果表明:粗晶试样经多向压缩后,晶粒由45 μm细化至约200 nm,抗拉强度提升了73.3%,拉伸断口观察到数量少且深度浅的韧窝。当退火温度低于400 ℃时,多向压缩试样的晶粒未明显生长,仍保持良好的综合力学性能。随着退火温度升高,拉伸断口的韧窝数目增多且深度变深;当退火温度为500 ℃时,晶粒生长,抗拉强度及硬度快速下降,伸长率大幅提升。

 In order to improve the mechanical properties of TA2 pure titanium, the multi-directional compression and annealing treatment was carried out on the coarse grain TA2 pure titanium samples, and the microstructures, hardness, tensile properties and tensile fracture morphologies of coarse grain samples, multi-directional compression samples and annealed samples at different temperatures were compared by means of transmission electron fracture morphology observation, micro-nano indentation hardness test, tensile test at room temperature and scanning electron microscope fracture morphology observation. The results show that after multi-directional compression of coarse grain samples, the grain size is refined from 45 μm to 200 nm, the tensile strength is increased by 73.3%, and there are less and shallower dimples obtained in the tensile fracture. When the annealing temperature is below 400 ℃, the grains of multi-directional compression samples do not grow obviously, and the mechanical properties are kept at a high level. With the increasing of annealing temperature, the number of dimples on the tensile fracture is increased and the depth of dimples is deepened. When the annealing temperature is 500 ℃, the grain grows, the tensile strength and hardness are decreased rapidly and the elongation is greatly improved.

基金项目:
国家自然科学基金资助项目(51561003);广西高校高性能结构材料及热表加工重点实验室开放基金项目(HPSMT-SP202303)
作者简介:
作者简介:陈荣友(1999-),男,硕士研究生 E-mail:709028670@qq.com 通信作者:韦春华(1984-),男,博士,讲师 E-mail:weichunhua@gxu.edu.cn
参考文献:

 [1]杨锐,马英杰,雷家峰,等. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.


 


Yang R, Ma Y J, Lei J F, et al. Fine tuning of composition and morphology of constituent phases of high strength titanium alloys[J]. Acta Metallurgica Sinica, 2021, 57(11): 1455-1470.


 


[2]柴希阳,高志玉,潘涛,等. 工业纯钛TA2热变形过程的流变行为本构方程[J]. 工程科学学报, 2018, 40(2): 226-232.


 


Chai X Y, Gao Z Y, Pan T, et al. Intrinsic equations of rheological behavior of industrial pure titanium TA2 during thermal deformation[J]. Chinese Journal of Engineering, 2018, 40(2): 226-232.


 


[3]杨羽. TA2工业纯钛超细晶化的组织演化规律研究[J]. 轻工科技, 2020, 36(2): 45-46.


 


Yang Y. Study on the organization evolution law of ultrafine crystallization of TA2 industrial pure titanium[J]. Light Industry Science and Technology, 2020, 36(2): 45-46.


 


[4]海敏娜,王永梅,贾栓孝,等.热处理对深海耐压壳用Ti542222钛合金厚板组织性能影响研究[J].稀有金属,2023,47(3):365-372.


 


Hai M N, Wang Y M, Jia S X, et al. Microstructure and properties of high strength and high toughness titanium alloy plate for deepsea pressure hull with solution aging[J]. Chinese Journal of Rare Metals,2023,47(3):365-372.


 


[5]唐伟,余传魁,汪昌顺,等.Ti-6Al-4V合金螺栓滚压过程中的组织演变规律研究[J].稀有金属,2023,47(11):1486-1494.


 


Tang W, Yu C K, Wang C S, et al. Microstructure evolution of Ti-6Al-4V alloy bolt during thread rolling process[J]. Chinese Journal of Rare Metals2023,47(11):1486-1494.


 


[6]Zhao P C, Yuan G J, Wang R Z, et al. Grainrefining and strengthening mechanisms of bulk ultrafine grained CPTi processed by LECAP and MDF[J]. Journal of Materials Science & Technology, 2021, 83: 196-207.


 


[7]Dyakonov G S, Mironov S, Semenova I P, et al. EBSD analysis of grainrefinement mechanisms operating during equalchannel angular pressing of commercialpurity titanium[J]. Acta Materialia, 2019, 173: 174-183.


 


[8]Wang C T, Gao N, Gee M G, et al. Processing of an ultrafinegrained titanium by highpressure torsion: An evaluation of the wear properties with and without a TiN coating[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17: 166-175.


 


[9]Zhu K Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism of alphatitanium using SMAT[J]. Acta Materialia, 2004, 52(14): 4101-4110.


 


[10]Karimi M, Bozorg M. Wear behavior of laminated nanostructured CPTi sheets fabricated by severe plastic deformation[J]. Materials Chemistry and Physics, 2022, 290:126634.


 


[11]Garbacz H, GradzkaDahlke M, Kurzydlowski K J. The tribological properties of nanotitanium obtained by hydrostatic extrusion[J]. Wear, 2007, 263: 572-578.


 


[12]Zherebtsov S, Kudryavtsev E,Kostjuchenko S,et al. Strength and ductilityrelated properties of ultrafine grained twophase titanium alloy produced by warm multiaxial forging [J]. Materials Science & Engineering A, 2012,536: 190-196.


 


[13]Zhao X C, Yang X, Liu X Y, et al. The processing of pure titanium through multiple passes of ECAP at room temperature[J]. Materials Science & Engineering A, 2010, 527(23): 6335-6339.


 


[14]Mironov S, Zherebtsov S, Semiatin S L. The unusual character of microstructure evolution during "abc" deformation of commercialpurity titanium[J]. Journal of Alloys and Compounds, 2022, 913: 165281.


 


[15]Miura H, Kobayashi M, Aoba T, et al. An approach for roomtemperature multidirectional forging of pure titanium for strengthening[J]. Materials Science & Engineering A, 2018, 731: 603-608.


 


[16]Zhao P, Chen B, Kelleher J, et al. Highcyclefatigue induced continuous grain growth in ultrafinegrained titanium[J]. Acta Materialia, 2019, 174: 29-42.


 


[17]Hoseini M, Pourian M H, Bridier F, et al. Thermal stability and annealing behaviour of ultrafine grained commercially pure titanium[J]. Materials Science & Engineering A, 2012, 532: 58-63.


 


[18]赵鹏程. 温度及应力诱发超细晶工业纯钛再结晶与晶粒长大的机理研究[D].上海:华东理工大学,2020.


 


Zhao P C. A Study on the Mechanisms of Temperature and Stress Induced Recrystallization and Grain Growth of Ultrafine Grained CPTi [D]. Shanghai: East China University of Science and Technology, 2020.


 


[19]Hansen N. HallPetch relation and boundary strengthening [J]. Scripta Materialia, 2004, 51(8): 801-806.


 


[20]贺峰,杨双平,曹继敏,等. 冷变形和固溶时效对Ti-25Nb-25Zr合金性能的研究[J].稀有金属,2023,47(7):950-958.


 


He F, Yang S P, Cao J M, et al. Mechanical properties of Ti-25Nb-25Zr alloy in cold deformation and solution and aging[J]. Chinese Journal of Rare Metals2023,47(7):950-958.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9