网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
18CrNiMo7-6合金钢ZerilliArmstrong本构模型的建立及修正
英文标题:Establishment and modification on Zerilli-Armstrong constitutive model for 18CrNiMo7-6 alloy steel
作者:郭自洋1 王伟1 2 马世博1 2 闫华军1 2 穆振凯1 2 
单位:1. 河北科技大学 材料科学与工程学院  2. 河北科技大学 河北省材料近净成形技术重点实验室 
关键词:18CrNiMo7-6合金钢 ZerilliArmstrong本构模型 热变形行为 等温压缩试验 模型修正 
分类号:TG386.2
出版年,卷(期):页码:2024,49(4):235-241
摘要:

 采用Gleeble-3500热模拟试验机在应变速率为0.001~1 s-1、变形温度为700~1000 ℃的条件下,对18CrNiMo7-6合金钢实施等温压缩试验,获得18CrNiMo7-6合金钢在不同条件下的真实应力-真实应变曲线,分析其热变形行为。构建了18CrNiMo7-6合金钢的ZerilliArmstrongZA)本构模型,描述其热变形行为。通过对比分析ZA本构模型的预测值与等温压缩试验的试验值发现,预测值与试验值的线性相关系数为0.9750,平均相对误差为8.1792%。为了进一步提高模型的预测精度,采用应变的5阶多项式描述ZA本构模型中与应变有关的材料参数,实现对模型的修正,修正后的ZA本构模型的预测值与试验值的线性相关系数为0.9853,平均相对误差为5.5358%,有效提高了本构模型的预测精度。

 For 18CrNiMo7-6 alloy steel, the isothermal compression tests were conducted under the conditions of the strain rate of 0.001-1 s-1 and the deformation temperature of 700-1000 ℃ by Gleeble-3500 thermal simulation test machine, and the true stress-true strain curves of 18CrNiMo7-6 alloy steel under different conditions were obtained. Then, the thermal deformation behavior of 18CrNiMo7-6 alloy steel was analyzed, and the Zerilli-Armstrong (Z-A) constitutive model of 18CrNiMo7-6 alloy steel was constructed to describe its thermal deformation behavior. By comparing and analysing the predicted value of Z-A constitutive model with the test value of isothermal compression test, it was found that the linear correlation coefficient between the predicted and test values was 0.9750, and the average relative error was 8.1792%. In order to further improve the prediction accuracy of the model, the fifth-order polynomial of strain was used to describe the material parameters related to strain in Z-A constitutive model, and the model was modified. The linear correlation coefficient between the predicted value of the modified Z-A constitutive model and the test value was 0.9853, and the average relative error was 5.5358%, which effectively improved the prediction accuracy of the constitutive model.

基金项目:
国家自然科学基金资助项目(52205353);河北省自然科学基金资助项目(E2021208025,E2020208044)
作者简介:
作者简介:郭自洋(1998-),男,硕士研究生 E-mail:15613314604@163.com 通信作者:王伟(1986-),男,博士,副教授 E-mail:18631175658@163.com
参考文献:

 [1]Wu J Z, Wei P T, Liu H J, et al. Effect of shot peening intensity on surface integrity of 18CrNiMo7-6 steel[J]. Surface and Coatings Technology, 2021, 421: 127194.


 


[2]Xu G T, Luo J, Lu F Q, et al. Characterization of fracture toughness for surfacemodified layer of 18CrNiMo7-6 alloy steel after carburizing heat treatment by indentation method[J]. Engineering Fracture Mechanics, 2022, 269: 108508.


 


[3]Qin S W, Wang L X, Di L Y, et al. Effect of carburizing process on bending fatigue performance of notched parts of 18CrNiMo7-6 alloy steel[J]. Engineering Failure Analysis, 2023, 147: 107161.


 


[4]Krawczyk J, Pawowski B, Baa P. Banded microstructure in forged 18CrNiMo7-6 steel[J]. Metallurgy and Foundry Engineering, 2009, 35(1): 45-53.


 


[5]Fu P, Jiang C. Residual stress relaxation and microstructural development of the surface layer of 18CrNiMo7-6 steel after shot peening during isothermal annealing[J]. Materials & Design, 2014, 56: 1034-1038.


 


[6]Cao R Z, Wang W, Ma S B, et al. Arrhenius constitutive model and dynamic recrystallization behavior of 18CrNiMo7-6 steel[J]. Journal of Materials Research and Technology, 2023, 24: 6334-6347.


 


[7]吴少洋, 张建伟, 卢凤强, . 18CrNiMo7-6合金钢JC损伤模型失效参数研究[J]. 郑州大学学报:工学版, 2023, 44(1): 70-76.


 


Wu S Y, Zhang J W, Lu F Q, et al. Investigation on failure parameters of JC damage model of 18CrNiMo7-6 alloy steel [J]. Journal of Zhengzhou University:Engineering and Technology Edition, 2023, 44(1): 70-76.


 


[8]徐广涛, 卢凤强, 吴少洋, . 18CrNiMo7-6合金钢的动态本构参数确定[J]. 热加工工艺, 2023, 52(8): 49-53.


 


Xu G T, Lu F Q, Wu S Y, et al. Determination of dynamic constitutive parameters for 18CrNiMo7-6 alloy steel [J]. Hot Working Technology, 2023, 52(8): 49-53.


 


[9]谢一夔, 王启丞, 陈子坤, . 18CrNiMo7-6齿轮钢的热变形行为及组织演变规律[J]. 金属热处理, 2023, 48(2): 103-109.


 


Xie Y KWang Q C, Chen Z K, et al. Hot deformation behavior and microstructure evolution of 18CrNiMo7-6 gear steel [J]. Heat Treatment of Metals, 2023, 48(2): 103-109.


 


[10]王刚, 宋建, 张建伟, . 基于多晶体模型的18CrNiMo7-6合金钢本构参数确定[J]. 郑州大学学报:工学版, 2020, 41(2): 38-43.


 


Wang G, Song J, Zhang J W, et al. Constitutive parameters of 18CrNiMo7-6 alloy determined by a polycrystalline model [J]. Journal of Zhengzhou University:Engineering and Technology Edition, 2020, 41(2): 38-43.


 


[11]Zhan H Y, Wang G, Kent D, et al. Constitutive modelling of the flow behaviour of a β titanium alloy at high strain rates and elevated temperatures using the JohnsonCook and modified ZerilliArmstrong models[J]. Materials Science and Engineering: A, 2014, 612: 71-79.


 


[12]He A, Xie G L, Zhang H L, et al. A modified ZerilliArmstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel[J]. Materials & Design, 2014, 56: 122-127.


 


[13]Gurusamy M M, Rao B C. On the performance of modified ZerilliArmstrong constitutive model in simulating the metalcutting process[J]. Journal of Manufacturing Processes, 2017, 28: 253-265.


 


[14]Cai J, Wang K S, Han Y Y. A comparative study on Johnson Cook, modified ZerilliArmstrong and Arrheniustype constitutive models to predict hightemperature flow behavior of Ti-6Al-4V alloy in α+β phase[J]. High Temperature Materials and Processes, 2016, 35(3): 297-307.


 


[15]Samantaray D, Mandal S, Bhaduri A K. A comparative study on Johnson Cook, modified ZerilliArmstrong and Arrheniustype constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel [J]. Computational Materials Science, 2009, 47(2): 568-576.


 


[16]王伟, 王波, 闫华军, . 基于等温压缩试验的20Cr2Ni4AJohnsonCook本构模型及热加工图[J]. 热加工工艺, 2020, 49(13): 103-108,119.


 


Wang W, Wang B, Yan H J, et al. JohnsonCook constitutive model and hot processing map of 20Cr2Ni4A steel based on isothermal compression tests [J]. Hot Working Technology, 2020, 49(13): 103-108,119.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9