[1]Wu J Z, Wei P T, Liu H J, et al. Effect of shot peening intensity on surface integrity of 18CrNiMo7-6 steel[J]. Surface and Coatings Technology, 2021, 421: 127194.
[2]Xu G T, Luo J, Lu F Q, et al. Characterization of fracture toughness for surfacemodified layer of 18CrNiMo7-6 alloy steel after carburizing heat treatment by indentation method[J]. Engineering Fracture Mechanics, 2022, 269: 108508.
[3]Qin S W, Wang L X, Di L Y, et al. Effect of carburizing process on bending fatigue performance of notched parts of 18CrNiMo7-6 alloy steel[J]. Engineering Failure Analysis, 2023, 147: 107161.
[4]Krawczyk J, Pawowski B, Baa P. Banded microstructure in forged 18CrNiMo7-6 steel[J]. Metallurgy and Foundry Engineering, 2009, 35(1): 45-53.
[5]Fu P, Jiang C. Residual stress relaxation and microstructural development of the surface layer of 18CrNiMo7-6 steel after shot peening during isothermal annealing[J]. Materials & Design, 2014, 56: 1034-1038.
[6]Cao R Z, Wang W, Ma S B, et al. Arrhenius constitutive model and dynamic recrystallization behavior of 18CrNiMo7-6 steel[J]. Journal of Materials Research and Technology, 2023, 24: 6334-6347.
[7]吴少洋, 张建伟, 卢凤强, 等. 18CrNiMo7-6合金钢JC损伤模型失效参数研究[J]. 郑州大学学报:工学版, 2023, 44(1): 70-76.
Wu S Y, Zhang J W, Lu F Q, et al. Investigation on failure parameters of JC damage model of 18CrNiMo7-6 alloy steel [J]. Journal of Zhengzhou University:Engineering and Technology Edition, 2023, 44(1): 70-76.
[8]徐广涛, 卢凤强, 吴少洋, 等. 18CrNiMo7-6合金钢的动态本构参数确定[J]. 热加工工艺, 2023, 52(8): 49-53.
Xu G T, Lu F Q, Wu S Y, et al. Determination of dynamic constitutive parameters for 18CrNiMo7-6 alloy steel [J]. Hot Working Technology, 2023, 52(8): 49-53.
[9]谢一夔, 王启丞, 陈子坤, 等. 18CrNiMo7-6齿轮钢的热变形行为及组织演变规律[J]. 金属热处理, 2023, 48(2): 103-109.
Xie Y K,Wang Q C, Chen Z K, et al. Hot deformation behavior and microstructure evolution of 18CrNiMo7-6 gear steel [J]. Heat Treatment of Metals, 2023, 48(2): 103-109.
[10]王刚, 宋建, 张建伟, 等. 基于多晶体模型的18CrNiMo7-6合金钢本构参数确定[J]. 郑州大学学报:工学版, 2020, 41(2): 38-43.
Wang G, Song J, Zhang J W, et al. Constitutive parameters of 18CrNiMo7-6 alloy determined by a polycrystalline model [J]. Journal of Zhengzhou University:Engineering and Technology Edition, 2020, 41(2): 38-43.
[11]Zhan H Y, Wang G, Kent D, et al. Constitutive modelling of the flow behaviour of a β titanium alloy at high strain rates and elevated temperatures using the JohnsonCook and modified ZerilliArmstrong models[J]. Materials Science and Engineering: A, 2014, 612: 71-79.
[12]He A, Xie G L, Zhang H L, et al. A modified ZerilliArmstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel[J]. Materials & Design, 2014, 56: 122-127.
[13]Gurusamy M M, Rao B C. On the performance of modified ZerilliArmstrong constitutive model in simulating the metalcutting process[J]. Journal of Manufacturing Processes, 2017, 28: 253-265.
[14]Cai J, Wang K S, Han Y Y. A comparative study on Johnson Cook, modified ZerilliArmstrong and Arrheniustype constitutive models to predict hightemperature flow behavior of Ti-6Al-4V alloy in α+β phase[J]. High Temperature Materials and Processes, 2016, 35(3): 297-307.
[15]Samantaray D, Mandal S, Bhaduri A K. A comparative study on Johnson Cook, modified ZerilliArmstrong and Arrheniustype constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel [J]. Computational Materials Science, 2009, 47(2): 568-576.
[16]王伟, 王波, 闫华军, 等. 基于等温压缩试验的20Cr2Ni4A钢JohnsonCook本构模型及热加工图[J]. 热加工工艺, 2020, 49(13): 103-108,119.
Wang W, Wang B, Yan H J, et al. JohnsonCook constitutive model and hot processing map of 20Cr2Ni4A steel based on isothermal compression tests [J]. Hot Working Technology, 2020, 49(13): 103-108,119.
|