[1]郭宏, 王耀, 宋国鹏, 等. 超薄微尺度碳纤维/TA1复合层板的拉伸断裂行为 [J]. 锻压技术, 2022, 47(10): 72-81.
Guo H, Wang Y, Song G P, et al. Tensile fracture behavior for ultrathin micro scale carbon fibre/TA1 composite laminates [J]. Forging & Stamping Technology, 2022, 47 (10): 72-81.
[2]Mamalis D, Obande W, Koutsos V, et al. Novel thermoplastic fibre-metal laminates manufactured by vacuum resin infusion: The effect of surface treatments on interfacial bonding-science direct [J]. Materials & Design, 2019, 162: 331-344.
[3]王耀, 郭宏, 叶晓凯, 等. TA1/CFRP燃料电池双极板微流道充液成形性能及尺寸效应 [J]. 锻压技术, 2023, 48(5): 16-24.
Wang Y, Guo H, Ye X K, et al. Hydro-formability and scale effect of TA1/CFRP fuel cell bipolar plate microchannels [J]. Forging & Stamping Technology, 2023, 48 (5): 16-24.
[4]Heggemann T, Homberg W. Deep drawing of fiber metal laminates for automotive lightweight structures [J]. Composite Structures, 2019, 216(5): 53-57.
[5]王沁宇, 卓家桂, 李新顶, 等. 纤维/金属网增强层板低速冲击损伤机理和演化 [J]. 力学季刊, 2023, 44(1): 160-171.
Wang Q Y, Zhuo J G, Li X D, et al. Damage mechanism and evolution of fiber/metal wire reinforced plastic laminate under low-velocity impact [J]. Chinese Quarterly of Mechanics, 2023, 44 (1): 160-171.
[6]Lin Y Y, Liu C, Li H G, et al. Interlaminar failure behavior of GLARE laminates under double beam five-point-bending load [J]. Composite Structures, 2018, 201: 79-85.
[7]亓昌, 付利荣, 刘海涛, 等. 热塑性纤维金属层板抗冲击性能研究与优化 [J]. 重庆理工大学学报:自然科学, 2023, 37(4): 115-122.
Qi C, Fu L R, Liu H T, et al. Research and optimization of impact resistance for thermoplastic fiber metal laminates [J]. Journal of Chongqing University of Technology:Natural Science, 2023, 37 (4): 115-122.
[8]Xiang J M, Lu Y, Wang C Z, et al. Investigation on the low-velocity impact behaviour of non-symmetric FMLs-experimental and numerical methods [J]. International Journal of Crashworthiness, 2022, 27(1): 128-146.
[9]陈一哲, 范宏德, 王祎纯, 等. 车用纤维金属层板构件冲压变形行为研究 [J]. 汽车工程, 2023, 45(3): 517-525.
Chen Y Z, Fan H D, Wang Y C, et al. Research on stamping deformation of automotive fiber metal laminate [J]. Automotive Engineering, 2023, 45 (3): 517-525.
[10]王耀, 曹佳华, 杨超, 等. 超混杂纤维金属层板成形方法研究进展 [J]. 精密成形工程, 2023, 15(3): 19-35.
Wang Y, Cao J H, Yang C, et al. Research progress in forming methods of super hybrid fiber metal laminates [J]. Journal of Netshape Forming Eegineering, 2023, 15 (3): 19-35.
[11]Kavitha K, Vijayan R, Sathishkumar T. Fibre-metal laminates: A review of reinforcement and formability characteristics [J]. Materials Today: Proceedings, 2020, 22: 601-605.
[12]Wanhill R J H. GLARE: A versatile fibre metal laminate (FML) concept [J]. Aerospace Materials and Material Technologies, 2017, 1: 291-307.
[13]Li H G,Tian J M, Fei W, et al. Spring-back and failure characteristics of roll bending of GLARE laminates [J]. Materials Research Express, 2019, 6(8): 0865b2.
[14]Neto D M, Oliveira M C, Santos A D, et al. Influence of boundary conditions on the prediction of springback and wrinkling in sheet metal forming [J]. International Journal of Mechanical Sciences, 2017, 122: 244-254.
[15]Cui X H, Du Z H, Xiao A, et al. Electromagnetic partitioning forming and springback control in the fabrication of curved parts [J]. Journal of Materials Processing Technology, 2021, 288: 116889.
[16]Abeyrathna B, Ghanei S, Rolfe B, et al. Springback and end flare compensation in flexible roll forming [J]. IOP Conference Series: Materials Science and Engineering, 2020, 967(1): 012048.
[17]Sherkatghanad E, Lang L, Liu S, et al. Innovative approach to mass production of fiber metal laminate sheets [J]. Materials and Manufacturing Processes, 2018, 33(5): 552-563.
[18]Reddy P V, Reddy B V, Ramulu P J. Evolution of hydroforming technologies and its applications-A review [J]. Journal of Advanced Manufacturing Systems, 2020, 19(4): 737-780.
[19]Hwang Y M, Manabe K I. Latest hydroforming technology of metallictubes and sheets [J]. Metals-Open Access Metallurgy Journal, 2021, 11(9): 1360.
[20]王耀, 宋国鹏, 杨超, 等. 微尺度纤维/金属混杂层板的低约束拉伸变形性能 [J]. 锻压技术, 2022, 47(10): 63-71.
Wang Y, Song G P, Yang C, et al. Low constraint tensile deformation properties on micro scale fiber/metal hybrid laminates [J]. Forging & Stamping Technology, 2022, 47 (10): 63-71.
[21]Li L, Lang L H, Hamza B, et al. Effect of hydroforming process on the formability of fiber metal laminates using semi-cured preparation [J].The International Journal of Advanced Manufacturing Technology, 2020, 107: 3909-3920.
[22]Blala H, Lang L H, Khan S, et al. A comparative study on the GLARE stamp forming behavior using cured and non-cured preparation followed by hot-pressing [J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(5): 1461-1473.
[23]Sinke J. Manufacturing of GLARE parts and structures [J]. Applied composite materials, 2003, 10: 293-305.
[24]Alderliesten R C, Homan J J. Fatigue and damage tolerance issues of Glare in aircraft structures [J]. International Journal of Fatigue, 2006, 28(10): 1116-1123.
[25]Gisario A, Barletta M. Laser forming of glass laminate aluminium reinforced epoxy (GLARE): On the role of mechanical, physical and chemical interactions in the multi-layers material [J]. Optics and Lasers in Engineering, 2018, 110(11): 364-376.
[26]Blala H, Lang L, Sherkatghanad E, et al. An investigation into process parameters effect on the formability of GLARE materials using stamp forming [J]. Applied Composite Materials, 2020, 26(5-6): 1423-1436.
[27]Schubert F, Minar N K, Sause M, et al.Thermoplastic fiber metal laminates for automated production [J]. Lightweight Design worldwide, 2019, 12(4): 12-17.
[28]Jin K, Chen K, Luo X Y, et al. Fatigue crack growth and delamination mechanisms of Ti/CFRP fibre metal laminates at high temperatures [J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(6): 1115-1125.
|