网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
GLARE复杂截面构件低约束流体辅助成形规律
英文标题:Low constraint fluid-assisted forming law for GLARE complex section components
作者:王耀1 2 3 4 牛旭昶1 程娥1 张云华5 郑四发2 赵丽滨1 4 6 胡宁1 3 4 
单位:(1. 河北工业大学 机械工程学院 天津 300401 2. 清华大学 苏州汽车研究院(相城) 江苏 苏州 215134   3. 河北工业大学 电工装备可靠性与智能化国家重点实验室 天津 300401   4. 河北工业大学 先进智能防护装备技术教育部重点实验室 天津 300401   5. 河南本杰科技有限公司 河南 郑州 450003 6. 河北省跨尺度智能装备技术重点实验室 天津 300401) 
关键词:GLARE 低约束 流体辅助成形 复杂特征 失效形式 
分类号:TB333
出版年,卷(期):页码:2024,49(5):24-35
摘要:

 针对新一代航空制造材料玻璃纤维增强铝合金层板(GLARE),以低约束GLARE为板料制备了具有变曲率和曲面特征的异形盒形件,并采用流体辅助成形工艺进行试验,探究了压边力、液压及其加载路径对试件成形质量的影响规律,根据零件失效机理分析得到了有利于成形的最佳工艺参数,并结合优化后的液压加载路径得到复杂构件成形规律。分析了不同成形高度异形盒形件的失效形式。结果表明:在一定范围内增大压边力与液压有利于零件成形;采取较大液压加载速度并保压的路径可提高零件的成形质量。

 

 Abstract: 

For a new generation of aerospace manufacturing material Glass Fiber Reinforced Aluminum alloy Laminates(GLARE), the irregular box-shaped parts with variable curvature and curved surface characteristics were prepared by using low-constraint GLARE as sheet metal, and the experiment was conducted by the fluid-assisted forming process to explore the influence laws of blank holding force, hydraulic pressure and its loading path on the forming quality of specimen. Furthermore, according to the failure mechanism analysis on the parts, the best process parameters for the forming were obtained, and combined with the optimized hydraulic pressure loading path, the forming law of complex components was obtained. In addition, the failure forms of irregular box-shaped parts with different forming heights were analyzed. The results show that increasing the blank holding force and hydraulic pressure within a certain range is beneficial to the forming of parts, and adopting the path of larger hydraulic pressure loading speed and holding pressure improves the forming quality of parts.
 
基金项目:
基金项目:国家自然科学基金资助项目(52005153);河北省自然科学基金资助项目(E2023202183);中央引导地方科技发展项目(236Z1903G,206Z1803G);天津市“项目+团队”重点培养专项(XC202052);河北省重点研发计划项目(23311812D)
作者简介:
作者简介:王耀(1986-),男,博士,副教授 E-mail:bhwy2014@126.com
参考文献:

 


 


[1]郭宏, 王耀, 宋国鹏, 等. 超薄微尺度碳纤维/TA1复合层板的拉伸断裂行为
[J]. 锻压技术, 2022, 47(10): 72-81.

 

Guo H, Wang Y, Song G P, et al. Tensile fracture behavior for ultrathin micro scale carbon fibre/TA1 composite laminates
[J]. Forging & Stamping Technology, 2022, 47 (10): 72-81.

 


[2]Mamalis D, Obande W, Koutsos V, et al. Novel thermoplastic fibre-metal laminates manufactured by vacuum resin infusion: The effect of surface treatments on interfacial bonding-science direct
[J]. Materials & Design, 2019, 162: 331-344.

 


[3]王耀, 郭宏, 叶晓凯, 等. TA1/CFRP燃料电池双极板微流道充液成形性能及尺寸效应
[J]. 锻压技术, 2023, 48(5): 16-24.

 

Wang Y, Guo H, Ye X K, et al. Hydro-formability and scale effect of TA1/CFRP fuel cell bipolar plate microchannels
[J]. Forging & Stamping Technology, 2023, 48 (5): 16-24.

 


[4]Heggemann T, Homberg W. Deep drawing of fiber metal laminates for automotive lightweight structures
[J]. Composite Structures, 2019, 216(5): 53-57.

 


[5]王沁宇, 卓家桂, 李新顶, 等. 纤维/金属网增强层板低速冲击损伤机理和演化
[J]. 力学季刊, 2023, 44(1): 160-171.

 

Wang Q Y, Zhuo J G, Li X D, et al. Damage mechanism and evolution of fiber/metal wire reinforced plastic laminate under low-velocity impact
[J]. Chinese Quarterly of Mechanics, 2023, 44 (1): 160-171.

 


[6]Lin Y Y, Liu C, Li H G, et al. Interlaminar failure behavior of GLARE laminates under double beam five-point-bending load
[J]. Composite Structures, 2018, 201: 79-85.

 


[7]亓昌, 付利荣, 刘海涛, 等. 热塑性纤维金属层板抗冲击性能研究与优化
[J]. 重庆理工大学学报:自然科学, 2023, 37(4): 115-122.

 

Qi C, Fu L R, Liu H T, et al. Research and optimization of impact resistance for thermoplastic fiber metal laminates
[J]. Journal of Chongqing University of Technology:Natural Science, 2023, 37 (4): 115-122.

 


[8]Xiang J M, Lu Y, Wang C Z, et al. Investigation on the low-velocity impact behaviour of non-symmetric FMLs-experimental and numerical methods
[J]. International Journal of Crashworthiness, 2022, 27(1): 128-146.

 


[9]陈一哲, 范宏德, 王祎纯, 等. 车用纤维金属层板构件冲压变形行为研究
[J]. 汽车工程, 2023, 45(3): 517-525.

 

Chen Y Z, Fan H D, Wang Y C, et al. Research on stamping deformation of automotive fiber metal laminate
[J]. Automotive Engineering, 2023, 45 (3): 517-525.

 


[10]王耀, 曹佳华, 杨超, 等. 超混杂纤维金属层板成形方法研究进展
[J]. 精密成形工程, 2023, 15(3): 19-35.

 

Wang Y, Cao J H, Yang C, et al. Research progress in forming methods of super hybrid fiber metal laminates
[J]. Journal of Netshape Forming Eegineering, 2023, 15 (3): 19-35.

 


[11]Kavitha K, Vijayan R, Sathishkumar T. Fibre-metal laminates: A review of reinforcement and formability characteristics
[J]. Materials Today: Proceedings, 2020, 22: 601-605.

 


[12]Wanhill R J H. GLARE: A versatile fibre metal laminate (FML) concept
[J]. Aerospace Materials and Material Technologies, 2017, 1: 291-307.

 


[13]Li H G,Tian J M, Fei W, et al. Spring-back and failure characteristics of roll bending of GLARE laminates
[J]. Materials Research Express, 2019, 6(8): 0865b2.

 


[14]Neto D M, Oliveira M C, Santos A D, et al. Influence of boundary conditions on the prediction of springback and wrinkling in sheet metal forming
[J]. International Journal of Mechanical Sciences, 2017, 122: 244-254.

 


[15]Cui X H, Du Z H, Xiao A, et al. Electromagnetic partitioning forming and springback control in the fabrication of curved parts
[J]. Journal of Materials Processing Technology, 2021, 288: 116889.

 


[16]Abeyrathna B, Ghanei S, Rolfe B, et al. Springback and end flare compensation in flexible roll forming
[J]. IOP Conference Series: Materials Science and Engineering, 2020, 967(1): 012048.

 


[17]Sherkatghanad E, Lang L, Liu S, et al. Innovative approach to mass production of fiber metal laminate sheets
[J]. Materials and Manufacturing Processes, 2018, 33(5): 552-563.

 


[18]Reddy P V, Reddy B V, Ramulu P J. Evolution of hydroforming technologies and its applications-A review
[J]. Journal of Advanced Manufacturing Systems, 2020, 19(4): 737-780.

 


[19]Hwang Y M, Manabe K I. Latest hydroforming technology of metallictubes and sheets
[J]. Metals-Open Access Metallurgy Journal, 2021, 11(9): 1360.

 


[20]王耀, 宋国鹏, 杨超, 等. 微尺度纤维/金属混杂层板的低约束拉伸变形性能
[J]. 锻压技术, 2022, 47(10): 63-71.

 

Wang Y, Song G P, Yang C, et al. Low constraint tensile deformation properties on micro scale fiber/metal hybrid laminates
[J]. Forging & Stamping Technology, 2022, 47 (10): 63-71.

 


[21]Li L, Lang L H, Hamza B, et al. Effect of hydroforming process on the formability of fiber metal laminates using semi-cured preparation
[J].The International Journal of Advanced Manufacturing Technology, 2020, 107: 3909-3920.

 


[22]Blala H, Lang L H, Khan S, et al. A comparative study on the GLARE stamp forming behavior using cured and non-cured preparation followed by hot-pressing
[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(5): 1461-1473.

 


[23]Sinke J. Manufacturing of GLARE parts and structures
[J]. Applied composite materials, 2003, 10: 293-305.

 


[24]Alderliesten R C, Homan J J. Fatigue and damage tolerance issues of Glare in aircraft structures
[J]. International Journal of Fatigue, 2006, 28(10): 1116-1123.

 


[25]Gisario A, Barletta M. Laser forming of glass laminate aluminium reinforced epoxy (GLARE): On the role of mechanical, physical and chemical interactions in the multi-layers material
[J]. Optics and Lasers in Engineering, 2018, 110(11): 364-376.

 


[26]Blala H, Lang L, Sherkatghanad E, et al. An investigation into process parameters effect on the formability of GLARE materials using stamp forming
[J]. Applied Composite Materials, 2020, 26(5-6): 1423-1436.

 


[27]Schubert F, Minar N K, Sause M, et al.Thermoplastic fiber metal laminates for automated production
[J]. Lightweight Design worldwide, 2019, 12(4): 12-17.

 


[28]Jin K, Chen K, Luo X Y, et al. Fatigue crack growth and delamination mechanisms of Ti/CFRP fibre metal laminates at high temperatures
[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(6): 1115-1125.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9