[1]李伟, 贾兴祺, 金学军.高强韧QPT工艺的先进钢组织调控和强韧化研究进展 [J].金属学报, 2022, 58(4):444-456.
Li W, Jia X Q, Jin X J. Research progress of microstructure control and strengthening mechanism of QPT process advanced steel with high strength and toughness [J]. Acta Metallurgica Sinica,2022, 58(4):444-456.
[2]李冰,陈星合,付博文, 等.7075铝合金线材连续流变挤压与双级时效热处理研究 [J].稀有金属, 2023, 47(9):1195-1203.
Li B, Chen X H, Fu B W, et al. Continuous rheo-extrusion and double aging heat treatment of 7075 aluminum alloy wire [J]. Chinese Journal of Rare Metals, 2023, 47(9):1195-1203.
[3]唐远寿, 司宇, 徐正萌, 等.超高强度钢在汽车轻量化中的应用及研究进展 [J].金属热处理, 2023,48(10):247-254.
Tang Y S, Si Y, Xu Z M, et al. Application and research progress of ultra-high strength steel in automotive lightweight [J]. Heat Treatment of Metals,2023,48(10):247-254.
[4]牛艳娥, 赵芃沛, 李宁, 等.国内外超高强度钢的研究现状及应用 [J].兵器装备工程学报, 2021, 42(7):274-279.
Niu Y E, Zhao P P, Li N, et al. Research status and application of ultra-high strength steel at home and abroad [J]. Journal of Ordnance Equipment Engineering, 2021, 42(7):274-279.
[5]武俊男,张津宁,刘凯悦,等.热冲压成形技术在车身开发中的应用 [J].天津科技,2023,50(7):95-100.
Wu J N, Zhang J N, Liu K Y, et al. Application of hot stamping technology in BIW [J]. Tianjin Science & Technology, 2023,50(7):95-100.
[6]裴永生, 盛天放, 杨园超, 等.QP980超高强钢翻边性能分析 [J].塑性工程学报, 2019, 26(6):50-54.
Pei Y S, Sheng T F, Yang Y C, et al. Analysis of flange performance of QP980 ultra-high-strength steel [J]. Journal of Plasticity Engineering, 2019, 26(6):50-54.
[7]聂昕,杨昕宇,张茜,等.基于不同应变路径的QP980超高强钢板回弹预测 [J].塑性工程学报,2020,27(4):68-74.
Nie X, Yang X Y, Zhang X, et al. Springback prediction of QP980 ultra high-strength steel plate based on different strain paths [J]. Journal of Plasticity Engineering, 2020, 27(4):68-74.
[8]金光宇,王业勤,宇凡,等.超高强钢QP980材料成形极限试验及仿真研究 [J].山东冶金,2023,45(5):28-30.
Jin G Y, Wang Y Q, Yu F, et al. Research on material forming limit test and simulation of ultra-high strength steel QP980 [J]. Shandong Metallurgy, 2023, 45(5):28-30.
[9]温正略,李娟,徐栋恺.QP980在汽车座椅靠背边板上的应用与仿真分析 [J].模具工业,2017,43(10):20-23.
Wen Z L, Li J, Xu D K. Application and simulation analysis of QP980 on the seat backrest side plate [J]. Die & Mould Industry,2017,43(10):20-23.
[10]刘贞伟,吴彦骏,莫云.QP980高强钢制造的汽车地板纵梁拉延件的回弹分析 [J].精密成形工程,2017,9(6):62-67.
Liu Z W, Wu Y J, Mo Y. Springback control of floor rail member made of AHSS QP980 [J].Journal of Netshape Forming Engineering,2017,9(6):62-67.
[11]王秋雨,夏明生,刘淑影,等.组织特征对980 MPa级先进超高强钢成形性能和拉伸行为的影响 [J].机械工程材料,2023,47(1):100-105,118.
Wang Q Y, Xia M S,Liu S Y,et al. Effect of microstructure characteristics on formability and tensile behavior of 980 MPa grade advanced ultra-high strength steels [J].Materlals for Mechanlcal Engineering,2023,47(1):100-105,118.
[12]唐帆.DP1180和QP1180钢组织与力学性能的比较 [J].船舶职业教育,2018,6(1):40-42.
Tang F.Comparison of microstructure and mechanical properties of DP1180 and QP1180 steels [J].Shipbuilding Vocational Education,2018,6(1):40-42.
[13]梁发周,钟圣滔.基于AutoForm模拟的汽车B柱加强板热冲压工艺分析与优化设计 [J].锻压技术,2022,47(12):75-80.
Liang F Z, Zhong S T. Analysis and optimization design on hot stamping process for automobile B-pillar reinforcement plate based on AutoForm simulation [J]. Forging & Stamping Technology, 2022,47(12):75-80.
[14]Fu B, Yang W, Wang Y, et al. Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-energy X-ray diffraction [J]. Acta Materialia, 2014, 76: 342-354.
[15]Tjahjanto D, Suiker A, Turteltaub S, et al. Micromechanical predictions of TRIP steel behavior as a function of microstructural parameters [J]. Computational Materials Science, 2007, 41(1): 107-116.
|