[1]Liu J,Sun S,Guan Y J. Numerical investigation on the laser bending of stainless steel foil with pre-stresses [J]. Journal of Materials Processing Technology, 2009,209(3):1580-1587.
[2]Shen H,Vollertsen F. Modelling of laser forming-An review [J]. Computational Materials Science, 2009,46(4):834-840.
[3]Guo Y K,Shi Y J,Wang X G,et al. A method to realize high-precision and large laser thermal bending angle [J]. Journal of Manufacturing Processes, 2021,62:168-178.
[4]Uday S D, Shrikrishna N J,Ravi K.Laser forming systems:A review [J]. International Journal of Mechatronics and Manufacturing Systems, 2015,8(3-4):160-205.
[5]Dearden G,Edwardson S P.Some recent developments in two- and three-dimensional laser forming for ‘macro’ and ‘micro’ applications [J]. Journal of Optics A: Pure and Applied Optics, 2003, 5:S8.
[6]Labeas G N. Development of a local three-dimensional numerical simulation model for the laser forming process of aluminium components [J]. Journal of Materials Processing Technology, 2008,207(1-3):248-257.
[7]Kant R, Joshi S N. Thermo-mechanical studies on bending mechanism, bend angle and edge effect during multi-scan laser bending of magnesium M1A alloy sheets [J]. Journal of Manufacturing Processes, 2016,23:135-148.
[8]Shidid D P,Hoseinpour G M,Brandt M,et al. Study of effect of process parameters on titanium sheet metal bending using Nd:YAG laser [J]. Optics & Laser Technology, 2013,47:242-247.
[9]Gisario A, Barletta M, Venettacci S. Improvements in springback control by external force laser-assisted sheet bending of titanium and aluminum alloys [J]. Optics & Laser Technology, 2016,86:46-53.
[10]Germann L, Banerjee D, Guédou J Y,et al. Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide [J]. Intermetallics, 2005,13(9):920-924.
[11]Partridge A, Shelton E F J. Processing and mechanical property studies of orthorhombic titanium-aluminide-based alloys [J]. Air & Space Europe, 2001,3(3):170-173.
[12]Emura S, Araoka A, Hagiwara M. B2 grain size refinement and its effect on room temperature tensile properties of a Ti-22Al-27Nb orthorhombic intermetallic alloy [J]. Scripta Materialia, 2003,48(5):629-634.
[13]Li X, Wang G F, Zhang J X,et al. Electrically assisted superplastic forming/diffusion bonding of the Ti2AlNb alloy sheet [J]. The International Journal of Advanced Manufacturing Technology, 2020,106(1):77-89.
[14]Wu J, Xu L, Lu Z G,et al. Microstructure design and heat response of powder metallurgy Ti2AlNb alloys [J]. Journal of Materials Science & Technology, 2015,31(12):1251-1257.
[15]Zhang Q C, Chen M H, Wang H,et al. Thermal deformation behavior and mechanism of intermetallic alloy Ti2AlNb [J]. Transactions of Nonferrous Metals Society of China, 2016,26(3):722-728.
[16]Chen Y B, Zhang K Z, Xue H,et al. Study on laser welding of a Ti-22Al-25Nb alloy: Microstructural evolution and high temperature brittle behavior [J]. Journal of Alloys and Compounds, 2016,681:175-185.
[17]Lei Z L, Zhou H, Chen Y B,et al. A comparative study of deformation behaviors between laser-welded joints and base metal of Ti-22Al-24.5Nb-0.5Mo alloy [J]. Journal of Materials Engineering and Performance, 2019,28(8):5009-5020.
[18]Wang W, Zeng W D, Li D, et al. Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition [J]. Materials Science and Engineering: A, 2016,662:120-128.
[19]Maji K, Shukla R, Nath A K, et al. Finite element analysis and experimental investigations on laser bending of AISI304 stainless steel sheet [J]. Procedia Engineering, 2013,64:528-535.
|