网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Ti2AlNb轧板激光弯曲工艺及微观组织研究
英文标题:Research on laser bending process and microstructure for Ti2AlNb rolled sheet
作者:姜森宝 王宇盛 陈瑶 荣建 蒲容森 毛迪 
单位:(航空工业成都飞机工业(集团)有限责任公司 四川 成都 610092) 
关键词:Ti2AlNb合金 激光弯曲 微观组织 形状畸变 弯曲角度 
分类号:TG302
出版年,卷(期):页码:2024,49(5):61-66
摘要:

 为柔性制造Ti2AlNb合金薄壁弯曲零件,研究了激光弯曲工艺参数对弯曲角度和微观组织的影响规律。通过不同激光功率、扫描速度、扫描道次、扫描路径和试样宽度等工艺参数下的激光弯曲实验,对比分析了弯曲样件的成形质量及微观组织。结果表明:当试样宽度为40 mm时,在激光束半径为0.3 mm、激光功率为0.4 kW和扫描速度为1.0 m·min-1下,单道次弯曲角度达3.3°;随着扫描道次的增加,弯曲角度近线性增加,8次扫描后的弯曲角度为18°;侧向偏移直线扫描路径与直线扫描路径趋势近似,但弯曲圆角较大,S曲线扫描路径会导致弯曲试样形状畸变;小光斑直径激光弯曲的微观组织类似于激光焊接,包括熔化区、热影响区和母材区,材料的维氏硬度从母材区到熔化区呈下降趋势。因此,激光弯曲成形是一种对Ti2AlNb合金薄板局部弯曲的有效加工方法,但需要精确控制。

 

 In order to flexible manufacture the thin-wall Ti2AlNb alloy thin wall bent parts, the influences of laser bending process parameters on the bending angles and microstructure were studied, and the forming quality and microstructure of the bent samples were compared and analyzed by laser bending experiments with different laser powers, scanning rates, scanning passes, scanning paths and sample widthes. The results show that when the sample width is 40 mm, the laser beam radius is 0.3 mm, the laser power is 0.4 kW and the scanning rate is 1.0 m·min-1, the bending angle under single scanning pass reaches 3.3°. With the increasing of scanning pass, the bending angle increases almost linearly, and the bending angle after eight times scanning is 18°. The lateral offset linear scanning path is similar to the trend of the liner scanning path, but the bending fillet is larger, and the S-curve scanning path causes distortion in the shape of the bent sample. The microstructure of laser bending with small spot diameter is similar to that of laser welding, which includes the melting zone, heat affected zone and base material zone, and the Vickers hardness of the material decreases from the base material zone to the melting zone. Thus, laser bending is an effective processing method for local bending of Ti2AlNb alloy thin sheet, but it needs precise control.

 
基金项目:
基金项目:国家博士后基金(2020M670792)
作者简介:
作者简介:姜森宝(1986-),男,博士,工程师 E-mail:jiangsenbao@126.com
参考文献:

 
[1]Liu J,Sun S,Guan Y J. Numerical investigation on the laser bending of stainless steel foil with pre-stresses
[J]. Journal of Materials Processing Technology, 2009,209(3):1580-1587.


 


[2]Shen H,Vollertsen F. Modelling of laser forming-An review
[J]. Computational Materials Science, 2009,46(4):834-840.

 


[3]Guo Y K,Shi Y J,Wang X G,et al. A method to realize high-precision and large laser thermal bending angle
[J]. Journal of Manufacturing Processes, 2021,62:168-178.

 


[4]Uday S D, Shrikrishna N J,Ravi K.Laser forming systems:A review
[J]. International Journal of Mechatronics and Manufacturing Systems, 2015,8(3-4):160-205.

 


[5]Dearden G,Edwardson S P.Some recent developments in two- and three-dimensional laser forming for ‘macro’ and ‘micro’ applications
[J]. Journal of Optics A: Pure and Applied Optics, 2003, 5:S8.


[6]Labeas G N. Development of a local three-dimensional numerical simulation model for the laser forming process of aluminium components
[J]. Journal of Materials Processing Technology, 2008,207(1-3):248-257.

 


[7]Kant R, Joshi S N. Thermo-mechanical studies on bending mechanism, bend angle and edge effect during multi-scan laser bending of magnesium M1A alloy sheets
[J]. Journal of Manufacturing Processes, 2016,23:135-148.

 


[8]Shidid D P,Hoseinpour G M,Brandt M,et al. Study of effect of process parameters on titanium sheet metal bending using Nd:YAG laser
[J]. Optics & Laser Technology, 2013,47:242-247.

 


[9]Gisario A, Barletta M, Venettacci S. Improvements in springback control by external force laser-assisted sheet bending of titanium and aluminum alloys
[J]. Optics & Laser Technology, 2016,86:46-53.

 


[10]Germann L, Banerjee D, Guédou J Y,et al. Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide
[J]. Intermetallics, 2005,13(9):920-924.

 


[11]Partridge A, Shelton E F J. Processing and mechanical property studies of orthorhombic titanium-aluminide-based alloys
[J]. Air & Space Europe, 2001,3(3):170-173.

 


[12]Emura S, Araoka A, Hagiwara M. B2 grain size refinement and its effect on room temperature tensile properties of a Ti-22Al-27Nb orthorhombic intermetallic alloy
[J]. Scripta Materialia, 2003,48(5):629-634.

 


[13]Li X, Wang G F, Zhang J X,et al. Electrically assisted superplastic forming/diffusion bonding of the Ti2AlNb alloy sheet
[J]. The International Journal of Advanced Manufacturing Technology, 2020,106(1):77-89.

 


[14]Wu J, Xu L, Lu Z G,et al. Microstructure design and heat response of powder metallurgy Ti2AlNb alloys
[J]. Journal of Materials Science & Technology, 2015,31(12):1251-1257.

 


[15]Zhang Q C, Chen M H, Wang H,et al. Thermal deformation behavior and mechanism of intermetallic alloy Ti2AlNb
[J]. Transactions of Nonferrous Metals Society of China, 2016,26(3):722-728.

 


[16]Chen Y B, Zhang K Z, Xue H,et al. Study on laser welding of a Ti-22Al-25Nb alloy: Microstructural evolution and high temperature brittle behavior
[J]. Journal of Alloys and Compounds, 2016,681:175-185.

 


[17]Lei Z L, Zhou H, Chen Y B,et al. A comparative study of deformation behaviors between laser-welded joints and base metal of Ti-22Al-24.5Nb-0.5Mo alloy
[J]. Journal of Materials Engineering and Performance, 2019,28(8):5009-5020.

 


[18]Wang W, Zeng W D, Li D, et al. Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition
[J]. Materials Science and Engineering: A, 2016,662:120-128.

 


[19]Maji K, Shukla R, Nath A K, et al. Finite element analysis and experimental investigations on laser bending of AISI304 stainless steel sheet
[J]. Procedia Engineering, 2013,64:528-535.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9