网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
5A02铝合金变径管电磁成形工艺及材料性能
英文标题:Electromagnetic forming process and material properties of 5A02 aluminium alloy reducer pipe
作者:门向南1 刘昊2 邓涛1 张晓林3 苏红亮1 张虹桃1 张松1  唐天宇2 黄亮2 
单位:(1.成都飞机工业(集团)有限责任公司 四川 成都 610092   2.华中科技大学 材料科学与工程学院 材料成形与模具技术全国重点实验室 湖北 武汉 430074   3.中航成飞民用飞机有限责任公司 四川 成都 610073) 
关键词:5A02铝合金 电磁成形 变径管 线圈匝数 放电电压 力学性能 
分类号:TG391
出版年,卷(期):页码:2024,49(5):115-124
摘要:

 Based on the electromagnetic forming process of 5A02 aluminum alloy reducer pipe, the influences of coil turns and discharge voltage on the forming accuracy of reducer pipe were studied by numerical simulation and forming experiments combined with fracture morphology analysis, and the reasons for the performance changes of 5A02 aluminum alloy after electromagnetic forming were explored. The results show that with the increasing of coil turns, the range of magnetic field action increases. When the number of coil turns n is 20, the pipe fittings could achieve good mold adhesion. As the voltage gradually increases, the combined effect of work hardening and pulse electromagnetic field leads to increase first and then decrease in the elongation of material. The tensile strength and hardness almost unchange after increasing. When the discharge voltage is 8 kV, the maximum die gap of pipe fittings is 0.12 mm, which is less than 0.2 mm meeting the forming requirements. Simultaneously, with the increasing of voltage, the number of ductile dimples on the tensile fracture surface of pipe fittings gradually decreases. However, when the voltage reaches 8 kV, the number of ductile dimples increases to some extent. 

 

 Based on the electromagnetic forming process of 5A02 aluminum alloy reducer pipe, the influences of coil turns and discharge voltage on the forming accuracy of reducer pipe were studied by numerical simulation and forming experiments combined with fracture morphology analysis, and the reasons for the performance changes of 5A02 aluminum alloy after electromagnetic forming were explored. The results show that with the increasing of coil turns, the range of magnetic field action increases. When the number of coil turns n is 20, the pipe fittings could achieve good mold adhesion. As the voltage gradually increases, the combined effect of work hardening and pulse electromagnetic field leads to increase first and then decrease in the elongation of material. The tensile strength and hardness almost unchange after increasing. When the discharge voltage is 8 kV, the maximum die gap of pipe fittings is 0.12 mm, which is less than 0.2 mm meeting the forming requirements. Simultaneously, with the increasing of voltage, the number of ductile dimples on the tensile fracture surface of pipe fittings gradually decreases. However, when the voltage reaches 8 kV, the number of ductile dimples increases to some extent. 

 
基金项目:
基金项目:国家重点研发计划项目(2023YFB3407000);国家自然科学基金资助项目(52274382)
作者简介:
作者简介:门向南(1983-),男,博士研究生,高级工程师 E-mail:mxn19830726@163.com 通信作者:黄亮(1981-),男,博士,教授 E-mail: huangliang@hust.edu.cn
参考文献:

 
[1]李晓冬,徐雪峰,魏科,等.5A02铝合金管材缩口增厚的影响显著性及成形规律研究
[J].塑性工程学报,2021,28(2):63-69.


 

Li X D, Xu X F, Wei K, et al. Study on influence significance and forming law of necking and thickening of 5AO2 aluminum tube
[J]. Journal of Plasticity Engineering, 2021, 28(2): 63-69.

 


[2]Guo X Z, Li B, Jin K, et al. A simulation and experiment study on paraxial spinning of Ni-based superalloy tube
[J]. The International Journal of Advanced Manufacturing Technology,2017,93:4399-4407.

 


[3]郭训忠,陶杰,李华冠,等.CLAM钢异径管冷成形数值模拟及实验研究
[J].核科学与工程,2011,31(2):111-115.

 

Guo X Z, Tao J, Li H G, et al. Numerical simulation and experimental study of cold forming for CLAM steel reducer
[J].Chinese Journal of Nuclear Science and Engineering, 2011,31(2):111-115.

 


[4]郑伟龙,张治民,庄泉涌,等.变径管温挤压成形工艺数值模拟研究
[J].热加工工艺,2013,42(9):109-110.

 

Zheng W L, Zhang Z M, Zhuang Q Y, et al. Numerical simulation of warm extrusion process of reducer pipe
[J]. Hot Working Technology, 2013,42(9):109-110.

 


[5]白雪山,尹延广,赵天章.航空5A02铝合金T型三通管翻边电磁成形
[J].塑性工程学报,2021,28(4):24-29.

 

Bai X S, Yin Y G, Zhao T Z. Electromagnetic flanging of 5A02 aluminum alloy T-shaped tube for aviation
[J]. Journal of Plasticity Engineering, 2021,28(4):24-29.

 


[6]邱立,何琴,刘洪池.基于磁场变换器的管件电磁压缩电磁力分布及变形均匀性分析
[J].锻压技术,2023,48(5):245-253.

 

Qiu L, He Q, Liu H C. Analysis on electromagnetic force distribution and deformation uniformity for tube electromagnetic compression based on magnetic field converter
[J]. Forging & Stamping Technology, 2023,48(5):245-253.

 


[7]尹朋磊,邱立,王斌.双管件电磁翻边的电磁力分布与成形性能
[J].锻压技术,2023,48(7):107-114.

 

Yin P L, Qiu L, Wang B. Electromagnetic force distribution and forming performance for double-tube electromagnetic flanging
[J]. Forging & Stamping Technology, 2023,48(7):107-114.

 


[8]崔学习,万敏,吴向东,等.基于电磁辅助成形的汽车覆盖件成形工艺研究
[J].精密成形工程,2021,13(5):66-71.

 

Cui X X, Wan M, Wu X D, et al. Research on the forming process of automobile panel based on electromagnetic assisted forming
[J].Journal of Netshape Forming Engineering, 2021,13(5):66-71.

 


[9]Li J J, Qiu W, Huang L, et al. Gradient electromagnetic forming (GEMF): A new forming approach for variable-diameter tubes by use of sectional coil
[J].International Journal of Machine Tools and Manufacture, 2018,135:65-77.

 


[10]Xiong Q, Gao D, Li Z, et al. Electromagnetic attraction bulging of small aluminum alloy tube based on a field shaper
[J]. The International Journal of Advanced Manufacturing Technology, 2021,117:511-521.

 


[11]Zhang W, Ouyang S W, Du L M, et al. Electromagnetic forming with automatic feedback control of Lorentz force distribution: A new forming method and its application to high-uniformity tube deformation
[J]. Journal of Materials Processing Technology, 2023,313:117869.

 


[12]Li Z, Abu-siada A, Zhu H, et al. Study on the efficiency of simultaneous tube compression and expansion electromagnetic forming
[J]. IEEE Access, 2021,9:30035-30042.

 


[13]吴佳玮.电磁成形中电-热-高速效应对铝合金变形行为的作用及机理研究
[D].武汉:华中科技大学,2021.

 

Wu J W. Research on the Thermal Effect, Electric Effect and High-speed Effect on the Deformation Behavior and Mechanism of Aluminum Alloy in Electromagnetic Forming
[D]. Wuhan: Huazhong University of Science and Technology, 2021.

 


[14]刘欣,杨景超,李恒,等.管路构件塑性变形连接技术研究进展及挑战
[J].航空学报,2022,43(4):179-199.

 

Liu X, Yang J C, Li H, et al. Critical review on tube joining by plastic deformation
[J]. Acta Aeronautica et Astronautica Sinica, 2022,43(4): 179-199.

 


[15]Li G Y, Deng H K, Mao Y F, et al. Study on AA5182 aluminum sheet formability using combined quasi-static-dynamic tensile processes
[J]. Journal of Materials Processing Technology, 2018,255:373-386.

 


[16]Li F Q, Mo J H, Li J J, et al. Formability evaluation for low conductive sheet metal by novel specimen design in electromagnetic forming
[J]. The International Journal of Advanced Manufacturing Technology, 2017,88:1677-1689.

 


[17]Xie B X, Huang L, Xu J H, et al. Microstructure evolution and strengthening mechanism of Al-Li alloy during thermo-electromagnetic forming process
[J]. Journal of Materials Processing Technology, 2023,315:177922.

 


[18]Dong P X, Wu J W, Cao Q L, et al. Influence of the deformation temperature on the formability of AA5083 during electromagnetic forming
[J]. The International Journal of Advanced Manufacturing Technology, 2023,126:1639-1655.

 


[19]Ma H J, Mao W J, Su H L,et al. Rate-related study on mechanical properties and fracture characteristics in aluminium alloy via electromagnetic ring expansion test
[J]. International Journal of Mechanical Sciences, 2021,209:106712.

 


[20]严思梁,胡磊,张晓丽,等.电磁成形中材料本构模型研究进展
[J].塑性工程学报,2023,30(6):10-21.

 

Yan S L, Hu L, Zhang X L, et al. Investigation progress of material constitutive model for electromagnetic forming
[J]. Journal of Plasticity Engineering,2023,30(6):10-21.

 


[21]Liu W, Wu J J, Li J Q, et al. Electromagnetic forming limit diagram of AA5182-O aluminum alloy sheet:Marciniak-Kuczynski model, simulation and experiment
[J]. International Journal of Material Forming, 2022,15(6):74.

 


[22]杨东.5A02铝合金管热-力-弹性体耦合差温推弯成形极限研究
[D].南昌:南昌航空大学,2022.

 

Yang D. A Study on Forming Limit of 5A02 Aluminum Alloy Tube by Thermo-mechanical-elastomer Coupling Differential Temperature Push Bending
[D]. Nanchang: Nanchang Hangkong University, 2022.

 


[23]王冬.7500A低压开关柜主母线系统设计与铜排多物理场仿真分析
[D].镇江:江苏大学,2019.

 

Wang D. 7500A Low Voltage Switchgear Main Bus-bar System Design and Copper Bar Multiphysics Simulation Analysis
[D]. Zhenjiang: Jiangsu University, 2019.

 


[24]朱树峰.管件电磁成形线圈结构参数的研究
[D].沈阳:沈阳航空航天大学,2018.

 

Zhu S F. Research on the Structural Parameters of the Coil in the Processing of Tube Electromagnetic Forming
[D]. Shenyang: Shenyang Aerospace University, 2018.

 


[25]孙圣朋.钛合金板材及管件电磁成形技术的研究
[D].沈阳:沈阳航空航天大学,2017.

 

Sun S P. Research on the Electromagnetic Forming Technology of Titanium Alloy Sheet and Pipe Fitting
[D].Shenyang:Shenyang Aerospace University,2017.

 


[26]Li H W, Yan S L, Zhan M, et al. Eddy current induced dynamic deformation behaviors of aluminum alloy during EMF:Modeling and quantitative characterization
[J].Journal of Materials Processing Technology, 2018,263:423-439.

 


[27]Su H L, Huang L, Li J J, et al. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings
[J]. Journal of Materials Science & Technology, 2021,70(11):125-135.

 


[28]Xu J H, Huang L, Xu Y K, et al. Effect of pulsed electromagnetic field treatment on dislocation evolution and subsequent artificial aging behavior of 2195 Al-Li alloy
[J]. Materials Characterization, 2022,187:11872-1118883.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9