[1]苏红亮.2219铝合金电磁成形宏微观机理及电磁翻边工艺基础研究 [D].武汉:华中科技大学,2020.
Su H L. Research on the Macro and Micro Mechanisms of 2219 Aluminum Alloy Under Electromagnetic Forming and the Basis of Electromagnetic Flanging Process [D]. Wuhan: Huazhong University of Science and Technology, 2020.
[2]任东超,邱娟,杨涛,等.2219铝合金热加工及组织演化 [J].锻压技术,2022,47(5):211-216.
Ren D C, Qiu J, Yang T, et al. Thermal working and microstructure evolution for 2219 aluminum alloy [J]. Forging & Stamping Technology, 2020, 47(5): 211-216.
[3]管仁国,娄花芬,黄晖,等.铝合金材料发展现状、趋势及展望 [J].中国工程科学,2020,22(5):68-75.
Guan R G, Lou H F, Huang H, et al. Development of aluminum alloy materials: Current status, trend, and prospects [J]. Strategic Study of CAE, 2020, 22(5): 68-75.
[4]谢冰鑫,黄亮,黄攀,等.铝合金板料电磁翻边全流程工艺研究 [J].中国机械工程,2021,32(2):220-226.
Xie B X, Huang L, Huang P, et al. Research on whole process route of electromagnetic flanging of aluminum alloy sheets [J]. China Mechanical Engineering, 2021, 32(2): 220-226.
[5]Li C, Liu D, Yu H, et al. Research on formability of 5052 aluminum alloy sheet in a quasi-static-dynamic tensile process [J]. International Journal of Machine Tools & Manufacture, 2009, 49(2):117-124.
[6]金淳,黄亮,李建军,等.不同热处理状态下成形速率对2219铝合金成形极限的影响 [J]. 塑性工程学报,2017,24(1):125-132.
Jin C, Huang L, Li J J, et al. Influence of forming rate on forming limit of 2219 aluminum alloy under different heat treatment conditions [J]. Journal of Plasticity Engineering, 2017, 24(1): 125-132.
[7]Xu J H, Huang L, Xie B X, et al. High strain rate deformation behavior of 2195 Al-Li alloy: Constitutive behavior and grain fragmentation [J]. Journal of Alloys and Compounds, 2023, 936: 168265.
[8]Xu J H, Huang L, Xie B X, et al. Microstructure evolution and mechanical properties of as-annealed and solution treated Al-Cu-Li alloy 2195 under dynamic compression [J]. Journal of Materials Processing Technology, 2022, 303: 117516.
[9]Xie B X, Huang L, Xu J H, et al. Microstructure evolution and strengthening mechanism of Al-Li alloy during thermo-electromagnetic forming process [J]. Journal of Materials Processing Technology, 2023, 315: 117922.
[10]苏红亮,黄亮,李建军,等.推进剂贮箱零件侧翻孔电磁成形数值模拟 [J].锻压技术,2016,41(12):53-61.
Su H L, Huang L, Li J J, et al. Numerical simulation on the side hole flanging electromagnetic forming for propellant tank parts [J]. Forging & Stamping Technology, 2016, 41(12): 53-61.
[11]王紫旻,赵淘,马伯洋,等.基于多场耦合仿真的时效态铝合金电磁翻孔成形 [J].锻压技术,2022,47(10):191-197.
Wang Z M, Zhao T, Ma B Y, et al. Electromagnetic flanging of aging aluminum alloy based on multi-field couplingsimulation [J]. Forging & Stamping Technology, 2022, 47(10): 191-197.
[12]崔丽,杜建宁,张超,等.2B06铝合金电磁成形试验研究 [J].锻压技术,2022,47(1):106-114.
Cui L, Du J N, Zhang C, et al. Experimental study on electromagnetic forming for 2B06 aluminum alloy [J]. Forging & Stamping Technology, 2022, 47(1): 106-114.
[13]Su H L, Huang L, Li J J, et al. Two-step electromagnetic forming: A new forming approach to local features of large-size sheet metal parts [J]. International Journal of Machine Tools and Manufacture, 2018, 124: 99-116.
[14]Li J J, Qiu W, Huang L, et al. Gradient electromagnetic forming (GEMF): A new forming approach for variable-diameter tubes by use of sectional coil [J]. International Journal of Machine Tools and Manufacture, 2018, 135: 65-77.
[15]Nieto-Fuentes J C, Rittel D, Osovski S. On a dislocation-based constitutive model and dynamic thermomechanical considerations [J]. International Journal of Plasticity, 2018, 108: 55-69.
[16]Xie B X, Huang L, Wang Z Y, et al. Microstructural evolution and mechanical properties of 2219 aluminum alloy from different aging treatments to subsequent electromagnetic forming [J]. Materials Characterization, 2021, 181: 111470.
[17]Su H L, Huang L, Li J J, et al. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings [J]. Journal of Materials Science & Technology, 2021, 70: 125-135.
[18]Ye T, Wu Y Z, Liu A M, et al. Mechanical property and microstructure evolution of aged 6063 aluminum alloy under high strain rate deformation [J]. Vacuum, 2019, 159: 37-44.
[19]Shamchi S P, Queiros d M F J M, Tavares P J, et al. Thermomechanical characterization of Alclad AA2024-T3 aluminum alloy using split Hopkinson tension bar [J]. Mechanics of Materials, 2019, 139: 103198.
[20]郭元恒, 谢延敏, 王东涛,等.2124铝合金热成形本构模型及工艺分析 [J].锻压技术,2022,47(2):213-219.
Guo Y H, Xie Y M, Wang D T, et al. Constitutive model and process analysis on thermoforming of 2124 aluminum alloy [J]. Forging & Stamping Technology, 2022, 47(2): 213-219.
[21]王晨宇,许进升,李辉,等.高强2A12铝合金修正Johnson-Cook本构模型 [J].中国有色金属学报,2023,33(1):78-87.
Wang C Y, Xu J S, Li H, et al. Modified Johnson-Cook constitutive model of high strength 2A12 aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2023, 33(1): 78-87.
[22]Wang H, Qin G, Li C G. A modified Arrhenius constitutive model of 2219-O aluminum alloy based on hot compression with simulation verification [J]. Journal of Materials Research and Technology, 2022, 19: 3302-3320.
[23]Zeng R, Huang L, Li J J, et al. Quantification of multiple softening processes occurring during multi-stage thermoforming of high-strength steel [J]. International Journal of Plasticity, 2019, 120: 64-87.
[24]张会萍,黄亮,王泽宇,等.不同热处理状态的2219铝合金动态加载下的力学行为和断裂机制 [J].稀有金属材料与工程,2022,51(7):2560-2569.
Zhang H P, Huang L, Wang Z Y, et al. Mechanical behavior and fracture mechanism of 2219 aluminum alloy under dynamic loading under different heat treatment states [J]. Rare Metal Materials and Engineering, 2022, 51(7): 2560-2569.
[25]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21:541-548.
[26]方进秀,张兴权,王会廷,等.5052铝合金的动态拉伸性能及其本构模型 [J].机械工程学报,2022,58(8):160-169.
Fang J X, Zhang X Q, Wang H T, et al. Dynamic tensile properties and constitutive model of 5052 aluminum alloy [J]. Journal of Mechanical Engineering, 2022,58(8): 160-169.
[27]André M M. Dynamic Behavior of Materials [M]. New York: John Wiley & Sons, Inc.,1994.
|