网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
2219铝合金高应变速率本构模型及其电磁成形应用评估
英文标题:High strain rate constitutive model and electromagnetic forming application evaluation for 2219 aluminum alloy
作者:唐天宇 黄亮 徐佳辉 谢冰鑫 孙怡然 时恬 
单位:(华中科技大学 材料科学与工程学院 材料成形与模具技术全国重点实验室 湖北 武汉 430074) 
关键词:2219铝合金 本构模型 高应变速率 热变形行为 电磁成形 
分类号:TG391
出版年,卷(期):页码:2024,49(5):125-134
摘要:

 为探究2219铝合金电磁成形的高应变速率变形行为,采用分离式霍普金森拉杆和热模拟实验机,分别进行了高应变速率和高温准静态的铝合金拉伸实验,分析了不同温度和应变速率对2219铝合金流动应力的影响,并对传统J-C本构模型的应变速率项进行修正和优化。基于传统和优化的J-C本构模型分别建立了电磁成形有限元模型,并与电磁成形实验结果进行对比。结果表明:2219铝合金的抗拉强度随应变速率的提高先增后降,流动应力随温度的增加而逐渐降低。优化的OP J-C本构模型的拟合效果最佳,线性相关系数R和平均相对误差AARE分别为0.9975和1.06%。相比于传统J-C本构模型,优化的本构模型电磁成形模拟结果与实验值的吻合度更高,证实了优化的本构模型能够准确描述2219铝合金的高速率变形行为。

 

  In order to explore the high strain rate deformation behavior of 2219 aluminum alloy during electromagnetic forming, the high strain rate and high temperature quasi-static tensile experiments of aluminum alloy were conducted by separate Hopkinson tensile rods and thermal simulation testing machine, and the influences of different temperatures and strain rates on the flow stress of 2219 aluminum alloy were analyzed. Then, the strain rate term of traditional J-C constitutive models was corrected and optimized. Furthermore, based on the traditional and optimized J-C constitutive model, the finite element models of electromagnetic forming were established respectively, and the experimental results of electromagnetic forming were compared. The results show that the tensile strength of 2219 aluminum alloy increases first and then decreases with the increasing of strain rate, and the flow stress gradually decreases with the increasing of temperature. The optimized OP J-C constitutive model has the best fitting effect, and linear correlation coefficients R and AARE are 0.9975 and 1.06%, respectively. Compared with the traditional J-C constitutive model, the electromagnetic forming simulation results of the optimized constitutive model are more consistent with the experimental values, which confirms that the optimized constitutive model can accurately describe the high-rate deformation behavior of 2219 aluminum alloy.

 
基金项目:
基金项目:国家自然科学基金面上项目(51975229);湖北省重点研发计划项目(2020BAB139);武汉市应用基础前沿项目(2020010601012178)
作者简介:
作者简介:唐天宇(1999-),男,硕士研究生 E-mail:tangtianyu@hust.edu.cn 通信作者:黄亮(1981-),男,博士,教授 E-mail:huangliang@hust.edu.cn
参考文献:

 
[1]苏红亮.2219铝合金电磁成形宏微观机理及电磁翻边工艺基础研究
[D].武汉:华中科技大学,2020.


 

Su H L. Research on the Macro and Micro Mechanisms of 2219 Aluminum Alloy Under Electromagnetic Forming and the Basis of Electromagnetic Flanging Process
[D]. Wuhan: Huazhong University of Science and Technology, 2020.

 


[2]任东超,邱娟,杨涛,等.2219铝合金热加工及组织演化
[J].锻压技术,2022,47(5):211-216.

 

Ren D C, Qiu J, Yang T, et al. Thermal working and microstructure evolution for 2219 aluminum alloy
[J]. Forging & Stamping Technology, 2020, 47(5): 211-216.

 


[3]管仁国,娄花芬,黄晖,等.铝合金材料发展现状、趋势及展望
[J].中国工程科学,2020,22(5):68-75.

 

Guan R G, Lou H F, Huang H, et al. Development of aluminum alloy materials: Current status, trend, and prospects
[J]. Strategic Study of CAE, 2020, 22(5): 68-75.

 


[4]谢冰鑫,黄亮,黄攀,等.铝合金板料电磁翻边全流程工艺研究
[J].中国机械工程,2021,32(2):220-226.

 

Xie B X, Huang L, Huang P, et al. Research on whole process route of electromagnetic flanging of aluminum alloy sheets
[J]. China Mechanical Engineering, 2021, 32(2): 220-226.

 


[5]Li C, Liu D, Yu H, et al. Research on formability of 5052 aluminum alloy sheet in a quasi-static-dynamic tensile process
[J]. International Journal of Machine Tools & Manufacture, 2009, 49(2):117-124.

 


[6]金淳,黄亮,李建军,等.不同热处理状态下成形速率对2219铝合金成形极限的影响
[J]. 塑性工程学报,2017,24(1):125-132.

 

Jin C, Huang L, Li J J, et al. Influence of forming rate on forming limit of 2219 aluminum alloy under different heat treatment conditions
[J]. Journal of Plasticity Engineering, 2017, 24(1): 125-132.

 


[7]Xu J H, Huang L, Xie B X, et al. High strain rate deformation behavior of 2195 Al-Li alloy: Constitutive behavior and grain fragmentation
[J]. Journal of Alloys and Compounds, 2023, 936: 168265.

 


[8]Xu J H, Huang L, Xie B X, et al. Microstructure evolution and mechanical properties of as-annealed and solution treated Al-Cu-Li alloy 2195 under dynamic compression
[J]. Journal of Materials Processing Technology, 2022, 303: 117516.

 


[9]Xie B X, Huang L, Xu J H, et al. Microstructure evolution and strengthening mechanism of Al-Li alloy during thermo-electromagnetic forming process
[J]. Journal of Materials Processing Technology, 2023, 315: 117922.

 


[10]苏红亮,黄亮,李建军,等.推进剂贮箱零件侧翻孔电磁成形数值模拟
[J].锻压技术,2016,41(12):53-61.

 

Su H L, Huang L, Li J J, et al. Numerical simulation on the side hole flanging electromagnetic forming for propellant tank parts
[J]. Forging & Stamping Technology, 2016, 41(12): 53-61.

 


[11]王紫旻,赵淘,马伯洋,等.基于多场耦合仿真的时效态铝合金电磁翻孔成形
[J].锻压技术,2022,47(10):191-197.

 

Wang Z M, Zhao T, Ma B Y, et al. Electromagnetic flanging of aging aluminum alloy based on multi-field couplingsimulation
[J]. Forging & Stamping Technology, 2022, 47(10): 191-197.

 


[12]崔丽,杜建宁,张超,等.2B06铝合金电磁成形试验研究
[J].锻压技术,2022,47(1):106-114.

 

Cui L, Du J N, Zhang C, et al. Experimental study on electromagnetic forming for 2B06 aluminum alloy
[J]. Forging & Stamping Technology, 2022, 47(1): 106-114.

 


[13]Su H L, Huang L, Li J J, et al. Two-step electromagnetic forming: A new forming approach to local features of large-size sheet metal parts
[J]. International Journal of Machine Tools and Manufacture, 2018, 124: 99-116.

 


[14]Li J J, Qiu W, Huang L, et al. Gradient electromagnetic forming (GEMF): A new forming approach for variable-diameter tubes by use of sectional coil
[J]. International Journal of Machine Tools and Manufacture, 2018, 135: 65-77.

 


[15]Nieto-Fuentes J C, Rittel D, Osovski S. On a dislocation-based constitutive model and dynamic thermomechanical considerations
[J]. International Journal of Plasticity, 2018, 108: 55-69.

 


[16]Xie B X, Huang L, Wang Z Y, et al. Microstructural evolution and mechanical properties of 2219 aluminum alloy from different aging treatments to subsequent electromagnetic forming
[J]. Materials Characterization, 2021, 181: 111470.

 


[17]Su H L, Huang L, Li J J, et al. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings
[J]. Journal of Materials Science & Technology, 2021, 70: 125-135.

 


[18]Ye T, Wu Y Z, Liu A M, et al. Mechanical property and microstructure evolution of aged 6063 aluminum alloy under high strain rate deformation
[J]. Vacuum, 2019, 159: 37-44.

 


[19]Shamchi S P, Queiros d M F J M, Tavares P J, et al. Thermomechanical characterization of Alclad AA2024-T3 aluminum alloy using split Hopkinson tension bar
[J]. Mechanics of Materials, 2019, 139: 103198.

 


[20]郭元恒, 谢延敏, 王东涛,等.2124铝合金热成形本构模型及工艺分析
[J].锻压技术,2022,47(2):213-219.

 

Guo Y H, Xie Y M, Wang D T, et al. Constitutive model and process analysis on thermoforming of 2124 aluminum alloy
[J]. Forging & Stamping Technology, 2022, 47(2): 213-219.

 


[21]王晨宇,许进升,李辉,等.高强2A12铝合金修正Johnson-Cook本构模型
[J].中国有色金属学报,2023,33(1):78-87.

 

Wang C Y, Xu J S, Li H, et al. Modified Johnson-Cook constitutive model of high strength 2A12 aluminum alloy
[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(1): 78-87.

 


[22]Wang H, Qin G, Li C G. A modified Arrhenius constitutive model of 2219-O aluminum alloy based on hot compression with simulation verification
[J]. Journal of Materials Research and Technology, 2022, 19: 3302-3320.

 


[23]Zeng R, Huang L, Li J J, et al. Quantification of multiple softening processes occurring during multi-stage thermoforming of high-strength steel
[J]. International Journal of Plasticity, 2019, 120: 64-87.

 


[24]张会萍,黄亮,王泽宇,等.不同热处理状态的2219铝合金动态加载下的力学行为和断裂机制
[J].稀有金属材料与工程,2022,51(7):2560-2569.

 

Zhang H P, Huang L, Wang Z Y, et al. Mechanical behavior and fracture mechanism of 2219 aluminum alloy under dynamic loading under different heat treatment states
[J]. Rare Metal Materials and Engineering, 2022, 51(7): 2560-2569.

 


[25]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures
[J]. Engineering Fracture Mechanics, 1983, 21:541-548.

 


[26]方进秀,张兴权,王会廷,等.5052铝合金的动态拉伸性能及其本构模型
[J].机械工程学报,2022,58(8):160-169.

 

Fang J X, Zhang X Q, Wang H T, et al. Dynamic tensile properties and constitutive model of 5052 aluminum alloy
[J]. Journal of Mechanical Engineering, 2022,58(8): 160-169.

 


[27]André M M. Dynamic Behavior of Materials
[M]. New York: John Wiley & Sons, Inc.,1994.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9