网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
钛合金超声滚压表面完整性分析及微动疲劳预测
英文标题:Surface integrity analysis and fretting fatigue prediction on titanium alloy by ultrasonic rolling
作者:黄芳1 倪勇大2 金浙良1 张雪晖3 
单位:(1. 浙江工业职业技术学院 机电工程学院 浙江 绍兴 312000 2. 天津工业大学 数学科学学院 天津 300387   3.浙江工业职业技术学院 继续教育学院 浙江 绍兴 312000) 
关键词:Ti6Al4V钛合金 表面完整性 微动疲劳 超声滚压 裂纹萌生 裂纹扩展 
分类号:TH161
出版年,卷(期):页码:2024,49(5):142-151
摘要:

 为改善Ti6Al4V钛合金加工表面形性和抗微动疲劳性能,采用超声滚压技术对其表面进行强化处理,并结合试验与数值分析研究了超声表面滚压强化后的表面完整性及其微动疲劳裂纹的萌生与扩展。试验研究表明:超声表面滚压处理使Ti6Al4V钛合金表面粗糙度明显降低、组织细化且沿深度方向呈梯度分布,并在钛合金表层引入了-573 MPa的残余压应力和表层硬度为447 HK、深度为120 μm的加工硬化层。根据超声表面滚压的加工表面形性,建立了Ti6Al4V钛合金微动疲劳有限元模型,结合最大相对滑动幅度、耗散能和等效损伤应力模型预测裂纹萌生位置,采用最大能量释放率准则预测裂纹萌生方向,最后基于ABAQUS和FRANC3D联合仿真实现了微动疲劳裂纹扩展预测。

 

 In order to improve the surface performance and fretting fatigue resistance of Ti6Al4V titanium alloy, the ultrasonic rolling technology was used for its surface strengthening treatment, and the surface integrity and fretting fatigue crack initiation and propagation after ultrasonic surface rolling strengthening were studied by combining experiments and numerbycal analysis. Experimental research shows that ultrasonic surface rolling process can significantly reduce the surface roughness of Ti6Al4V titanium alloy, refine the microstructure with a gradient distribution along the depth direction, and introduce the compressive residual stress of -573 MPa and the work hardened layer with surface hardness of 447 HK and depth of 120 μm in the surface layer of the titanium alloy. Based on the surface integrity induced by ultrasonic surface rolling process, a finite element model of fretting fatigue for Ti6Al4V titanium alloy was established, and the crack initiation position is predicted by combining the maximum relative sliding amplitude, dissipated energy and equivalent damage stress model. The crack initiation direction is predicted by the maximum energy release rate criterion. Finally, based on joint simulation of ABAQUS and FRANC3D, the prediction on the fretting fatigue crack propagation is realized. 

基金项目:
基金项目:浙江省基础公益研究计划资助项目(LTGS23F030001)
作者简介:
作者简介:黄芳(1981-),女,硕士,副教授 E-mail:huangf2009@126.com
参考文献:

 
[1]甘伟, 项俊锋, 黄芳. 锻造温度对汽车用新型钛合金性能的影响
[J]. 兵器材料科学与工程, 2019,42(5): 70-73.


 

Gan W, Xiang J F, Huang F. Effect of forging temperature on properties of new titanium alloys for automobiles
[J]. Ordnance Material Science and Engineering, 2019,42(5): 70-73.

 


[2]Yi J, Wang X B, Jiao L, et al. Research on deformation law and mechanism for milling micro thin wall with mixed boundaries of titanium alloy in mesoscale
[J]. Thin-Walled Structures, 2019, 144: 106329.

 


[3]曹彦生, 郑联语, 王攀, 等. 不锈钢套筒表面光整硬化高效加工技术
[J]. 工具技术, 2022, 56(12): 113-116.

 

Cao Y S, Zheng L Y, Wang P, et al. High-efficiency processing technology of stainless steel sleeve surface finishing and hardening
[J]. Tool Engineering, 2022, 56(12): 113-116.

 


[4]袁永强, 刘丹, 林伦, 等. 自动炮击针表面性能提升技术研究
[J].兵器材料科学与工程, 2023,46(1):43-47.

 

Yuan Y Q, Liu D, Lin L, et al. Research on surface performance improvement technology of automatic shelling needle
[J]. Ordnance Material Science and Engineering, 2023,46(1):43-47.

 


[5]高心寰, 潘金芝, 程志, 等. GCr15SiMn轴承座圈超声滚压表面抗接触疲劳性能分析
[J]. 热加工工艺, 2022,51(16):110-115.

 

Gao X H, Pan J Z, Cheng Z, et al. Analysis of contact fatigue resistance of GCr15SiMn bearing ring surface by ultrasonic rolling
[J]. Hot Working Technology, 2022,51(16):110-115.

 


[6]尚方方, 周振宇, 朴钟宇, 等. 超声滚压对铝合金表面质量和耐磨性影响研究
[J]. 液压与气动, 2022,46(7): 112-122.

 

Shang F F, Zhou Z Y, Piao Z Y, et al. Effect of ultrasonic rolling on surface quality and wear resistance of aluminum alloy
[J]. Chinese Hydraulics & Pneumatics, 2022,46(7): 112-122.

 


[7]王嘉钿, 张常胜, 苏豪, 等. 超声振动常温/中温滚压钛合金应力场分析
[J]. 制造技术与机床, 2021, (7): 84-88. 

 

Wang J T, Zhang C S, Su H, et al. Stress field analysis of titanium alloy rolled by ultrasonic vibration at room/medium temperature
[J]. Manufacturing Technology & Machine Tool, 2021, (7): 84-88.

 


[8]陈云峰, 尹丹青, 倪锋. 超声滚压静压力对0Cr13Ni5Mo不锈钢残余应力和粗糙度的影响
[J]. 锻压技术, 2023,48(10): 161-168.

 

Chen Y F, Yin D Q, Ni F. Influence of static pressure on residual stress and roughness during ultrasonic rolling for 0Cr13Ni5Mo stainless steel
[J]. Forging & Stamping Technology, 2023,48(10): 161-168.

 


[9]李凤琴, 赵波. 超声加工滚压力对钛合金表层特性的影响
[J]. 表面技术, 2019,48(10): 34-40.

 

Li F Q, Zhao B. Effect of ultrasonic processing burnishing pressure on titanium alloy surface properties
[J]. Surface Technology, 2019,48(10): 34-40. 

 


[10]王排岗, 王晓强, 王浩杰, 等. 42CrMo钢超声滚挤压表面硬度有限元分析及参数优化
[J]. 锻压技术, 2023,48(3): 152-158.

 

Wang P G,Wang X Q, Wang H J, et al. Finite element analysis and parameter optimization on surface hardness of ultrasonic rolling for 42CrMo steel
[J]. Forging & Stamping Technology, 2023,48(3): 152-158.

 


[11]潘高峰, 朱磊, 苑泽伟, 等. 超声滚压工艺对TI6AL4V钛合金表面残余应力的影响
[J]. 现代制造工程, 2022, (1): 85-90.

 

Pan G F, Zhu L, Yuan Z W, et al. Effect of ultrasonic rolling process on the surface residual stress of Ti6Al4V titanium alloy
[J]. Modern Manufacturing Engineering, 2022, (1): 85-90. 

 


[12]王朝阳, 黄俏梅, 秦荣斌, 等. 超声滚压载荷对 25CrMo4 车轴钢表面强化特征的影响规律
[J].制造技术与机床, 2024, (1):48-52.

 

Wang C Y, Huang Q M, Qin R B, et al. Influence of the intensity of ultrasonic rolling on surface strengthening features of 25CrMo4 axle steel
[J].Manufacturing Technology & Machine Tool, 2024, (1):48-52.

 


[13]任雁, 刘佳, 刘斌, 等. 超声滚挤压风电轴承材料表面粗糙度加工参数敏感性研究
[J]. 锻压技术, 2022, 47(1): 98-105.

 

Ren Y, Liu J, Liu B, et al. Sensitivity study on surface roughness processing parameters for wind turbine bearing materials by ultrasonic rolling extrusion
[J]. Forging & Stamping Technology, 2022, 47(1): 98-105.

 


[14]吴杰,党嘉强,李宇罡,等.应力超声滚压表面强化机理和抗疲劳性能研究
[J/OL].机械工程学报,1-10
[2024-04-23].http://kns.cnki.net/kcms/detail/11.2187.TH.20231220.0908. 002.html.

 

Wu J, Dang J Q, Li Y G, et al. Study on strengthening mechanism and anti-fatigue performance of stress ultrasonic rolling
[J/OL]. Journal of Mechanical Engineering,1-10
[2024-04-23].http://kns.cnki.net/kcms/detail/11.2187.TH.20231220.0908. 002.html.

 

 

 


[15]Ao N, Liu D X, Zhang X H, et al. Improved fretting fatigue mechanism of surface-strengthened Ti-6Al-4V alloy induced by ultrasonic surface rolling process
[J]. International Journal of Fatigue, 2023, 170: 107567. 

 


[16]Zou J H, Liang Y L, Yun J, et al. Fretting fatigue mechanism of 40CrNiMoA steel subjected to the ultrasonic surface rolling process: The role of the gradient structure
[J]. International Journal of Fatigue, 2023, 167: 107383.

 


[17]Liu D, Liu D X, Zhang X H, et al. An investigation of fretting fatigue behavior and mechanism in 17-4PH stainless steel with gradient structure produced by an ultrasonic surface rolling process
[J]. International Journal of Fatigue, 2020, 131: 105340.

 


[18]Yang J, Liu D X, Zhang X H, et al. The effect of ultrasonic surface rolling process on the fretting fatigue property of GH4169 superalloy
[J]. International Journal of Fatigue, 2020, 133:105373.

 


[19]Liu C S, Liu D X, Zhang X H, et al. Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process
[J]. International Journal of Fatigue, 2019, 125: 249-260.

 


[20]Zhang X H, Fan K F, Liu D X, et al. Numerical study on fretting fatigue crack initiation behaviors of Ti-6Al-4V alloy
[J]. Journal of Failure Analysis and Prevention, 2021, 21(4): 1283-1288.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9