[1]甘伟, 项俊锋, 黄芳. 锻造温度对汽车用新型钛合金性能的影响 [J]. 兵器材料科学与工程, 2019,42(5): 70-73.
Gan W, Xiang J F, Huang F. Effect of forging temperature on properties of new titanium alloys for automobiles [J]. Ordnance Material Science and Engineering, 2019,42(5): 70-73.
[2]Yi J, Wang X B, Jiao L, et al. Research on deformation law and mechanism for milling micro thin wall with mixed boundaries of titanium alloy in mesoscale [J]. Thin-Walled Structures, 2019, 144: 106329.
[3]曹彦生, 郑联语, 王攀, 等. 不锈钢套筒表面光整硬化高效加工技术 [J]. 工具技术, 2022, 56(12): 113-116.
Cao Y S, Zheng L Y, Wang P, et al. High-efficiency processing technology of stainless steel sleeve surface finishing and hardening [J]. Tool Engineering, 2022, 56(12): 113-116.
[4]袁永强, 刘丹, 林伦, 等. 自动炮击针表面性能提升技术研究 [J].兵器材料科学与工程, 2023,46(1):43-47.
Yuan Y Q, Liu D, Lin L, et al. Research on surface performance improvement technology of automatic shelling needle [J]. Ordnance Material Science and Engineering, 2023,46(1):43-47.
[5]高心寰, 潘金芝, 程志, 等. GCr15SiMn轴承座圈超声滚压表面抗接触疲劳性能分析 [J]. 热加工工艺, 2022,51(16):110-115.
Gao X H, Pan J Z, Cheng Z, et al. Analysis of contact fatigue resistance of GCr15SiMn bearing ring surface by ultrasonic rolling [J]. Hot Working Technology, 2022,51(16):110-115.
[6]尚方方, 周振宇, 朴钟宇, 等. 超声滚压对铝合金表面质量和耐磨性影响研究 [J]. 液压与气动, 2022,46(7): 112-122.
Shang F F, Zhou Z Y, Piao Z Y, et al. Effect of ultrasonic rolling on surface quality and wear resistance of aluminum alloy [J]. Chinese Hydraulics & Pneumatics, 2022,46(7): 112-122.
[7]王嘉钿, 张常胜, 苏豪, 等. 超声振动常温/中温滚压钛合金应力场分析 [J]. 制造技术与机床, 2021, (7): 84-88.
Wang J T, Zhang C S, Su H, et al. Stress field analysis of titanium alloy rolled by ultrasonic vibration at room/medium temperature [J]. Manufacturing Technology & Machine Tool, 2021, (7): 84-88.
[8]陈云峰, 尹丹青, 倪锋. 超声滚压静压力对0Cr13Ni5Mo不锈钢残余应力和粗糙度的影响 [J]. 锻压技术, 2023,48(10): 161-168.
Chen Y F, Yin D Q, Ni F. Influence of static pressure on residual stress and roughness during ultrasonic rolling for 0Cr13Ni5Mo stainless steel [J]. Forging & Stamping Technology, 2023,48(10): 161-168.
[9]李凤琴, 赵波. 超声加工滚压力对钛合金表层特性的影响 [J]. 表面技术, 2019,48(10): 34-40.
Li F Q, Zhao B. Effect of ultrasonic processing burnishing pressure on titanium alloy surface properties [J]. Surface Technology, 2019,48(10): 34-40.
[10]王排岗, 王晓强, 王浩杰, 等. 42CrMo钢超声滚挤压表面硬度有限元分析及参数优化 [J]. 锻压技术, 2023,48(3): 152-158.
Wang P G,Wang X Q, Wang H J, et al. Finite element analysis and parameter optimization on surface hardness of ultrasonic rolling for 42CrMo steel [J]. Forging & Stamping Technology, 2023,48(3): 152-158.
[11]潘高峰, 朱磊, 苑泽伟, 等. 超声滚压工艺对TI6AL4V钛合金表面残余应力的影响 [J]. 现代制造工程, 2022, (1): 85-90.
Pan G F, Zhu L, Yuan Z W, et al. Effect of ultrasonic rolling process on the surface residual stress of Ti6Al4V titanium alloy [J]. Modern Manufacturing Engineering, 2022, (1): 85-90.
[12]王朝阳, 黄俏梅, 秦荣斌, 等. 超声滚压载荷对 25CrMo4 车轴钢表面强化特征的影响规律 [J].制造技术与机床, 2024, (1):48-52.
Wang C Y, Huang Q M, Qin R B, et al. Influence of the intensity of ultrasonic rolling on surface strengthening features of 25CrMo4 axle steel [J].Manufacturing Technology & Machine Tool, 2024, (1):48-52.
[13]任雁, 刘佳, 刘斌, 等. 超声滚挤压风电轴承材料表面粗糙度加工参数敏感性研究 [J]. 锻压技术, 2022, 47(1): 98-105.
Ren Y, Liu J, Liu B, et al. Sensitivity study on surface roughness processing parameters for wind turbine bearing materials by ultrasonic rolling extrusion [J]. Forging & Stamping Technology, 2022, 47(1): 98-105.
[14]吴杰,党嘉强,李宇罡,等.应力超声滚压表面强化机理和抗疲劳性能研究 [J/OL].机械工程学报,1-10 [2024-04-23].http://kns.cnki.net/kcms/detail/11.2187.TH.20231220.0908. 002.html.
Wu J, Dang J Q, Li Y G, et al. Study on strengthening mechanism and anti-fatigue performance of stress ultrasonic rolling [J/OL]. Journal of Mechanical Engineering,1-10 [2024-04-23].http://kns.cnki.net/kcms/detail/11.2187.TH.20231220.0908. 002.html.
[15]Ao N, Liu D X, Zhang X H, et al. Improved fretting fatigue mechanism of surface-strengthened Ti-6Al-4V alloy induced by ultrasonic surface rolling process [J]. International Journal of Fatigue, 2023, 170: 107567.
[16]Zou J H, Liang Y L, Yun J, et al. Fretting fatigue mechanism of 40CrNiMoA steel subjected to the ultrasonic surface rolling process: The role of the gradient structure [J]. International Journal of Fatigue, 2023, 167: 107383.
[17]Liu D, Liu D X, Zhang X H, et al. An investigation of fretting fatigue behavior and mechanism in 17-4PH stainless steel with gradient structure produced by an ultrasonic surface rolling process [J]. International Journal of Fatigue, 2020, 131: 105340.
[18]Yang J, Liu D X, Zhang X H, et al. The effect of ultrasonic surface rolling process on the fretting fatigue property of GH4169 superalloy [J]. International Journal of Fatigue, 2020, 133:105373.
[19]Liu C S, Liu D X, Zhang X H, et al. Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process [J]. International Journal of Fatigue, 2019, 125: 249-260.
[20]Zhang X H, Fan K F, Liu D X, et al. Numerical study on fretting fatigue crack initiation behaviors of Ti-6Al-4V alloy [J]. Journal of Failure Analysis and Prevention, 2021, 21(4): 1283-1288.
|