网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Al-Zn-Mg-Cu合金包铝薄板组织及弯曲性能
英文标题:Microstructure and bending properties for Al-Zn-Mg-Cu alloy alclad sheet
作者:马良1 2 王经涛1 2 马军星1 黄同瑊1 付义祝1 隋信勤1 
单位:(1.山东南山铝业股份有限公司 国家铝合金压力加工工程技术研究中心 山东 龙口 265713    2.烟台南山学院 材料科学与工程学院 山东 龙口 265713) 
关键词:Al-Zn-Mg-Cu合金 包铝薄板 显微硬度 元素扩散 弯曲性能 
分类号:TG146.2
出版年,卷(期):页码:2024,49(5):245-250
摘要:

 采用显微硬度计、金相显微镜、扫描电子显微镜以及配套能谱仪,对厚度为6.32 mm的Al-Zn-Mg-Cu合金包铝薄板弯曲前后微观组织形貌差异及元素扩散情况进行表征与分析。结果表明:Al-Zn-Mg-Cu合金包铝薄板经过热轧复合处理后,过渡结合焊合界面区域平整光滑,无气孔空洞、氧化物夹杂等缺陷,过渡界面呈良好的冶金结合状态。包铝薄板包铝层厚向1/2位置到芯材的显微硬度呈逐渐增大趋势,且于200 HV附近稳定。包铝薄板基体组织中主合金元素在过渡界面内浓度呈梯度变化趋势。同时,包铝薄板经60°、90°、120°、150°及180°弯曲后,均未发现包铝层与芯材开裂的情况,板材弯曲性能良好,但随着弯曲角度的增大,表面变得更加粗糙。 

 

 The microstructure morphology differences and element diffusion conditions of Al-Zn-Mg-Cu alloy alclad sheet with the thickness of 6.32 mm before and after bending were characterized and analyzed by micro-hardness testers, metallographic microscopes, scanning electron microscopes and matching energy dispersive spectrometers. The results show that after hot rolling compound treatment, the transition bonding interface area of Al-Zn-Mg-Cu alloy alclad sheet is flat and smooth without defects such as pores, voids and oxide inclusions. The transition interface is in a good metallurgical bonding state. The microhardness of alclad sheet gradually increases from the 1/2 position of aluminum coating along the thickness direction to the core material, and stabilizes around 200 HV. The concentration of main alloy elements in the matrix structure of alclad sheet shows a gradient trend at the transition interface. At the same time, after bending at 60°, 90°, 120°, 150° and 180°, no cracking is found between aluminum coating and core material. The bending performance of sheet is good, but the surface becomes rougher with the increasing of bending angle.

 
基金项目:
作者简介:
作者简介:马良(1978-),男,学士,工程师 E-mail:maliang@nanshan.com.cn 通信作者:王经涛(1995-),男,硕士,工程师 E-mail:wjta0815@163.com
参考文献:

 
[1]唐程光, 唐淳, 阚洪贵. 铝合金高真空压铸减震器塔成型工艺方案设计研究
[J]. 汽车实用技术, 2020, 45(24):163-167.


 

Tang C G, Tang C, Kan H G. The Study on forming process design of aluminum alloy high vacuum die casting shock tower
[J]. Automobile Applied Technology, 2020, 45(24):163-167.

 


[2]杨冠华, 王陆钊, 桂洪利, 等. 轨道车辆T形接头铝合金结构焊接加改温度场检测与分析
[J]. 焊接技术, 2020, 49(12): 27-29,119.

 

Yang G H, Wang L Z, Gui H L, et al. Test and analysis of temperature field in welding modification of aluminum alloy T-shaped joint for rail vehicles
[J]. Welding Technology, 2020, 49(12): 27-29,119.

 


[3]Zhang H J, Sun S L, Liu H J, et al. Characteristic and mechanism of nugget performance evolution with rotation speed for high-rotation-speed friction stir welded 6061 aluminum alloy
[J]. Journal of Manufacturing Processes, 2020, 60: 544-552.

 


[4]曹召勋, 王军, 徐永东, 等. 挤压态6082铝合金热加工图及显微组织研究
[J]. 兵器材料科学与工程, 2021, 44(1): 88-93.

 

Cao Z X, Wang J, Xu Y D, et al. Processing map and microstructure of extruded 6082 aluminum alloy
[J]. Ordnance Material Science and Engineering, 2021, 44(1): 88-93.

 


[5]Saju T P, Narayanan R G, Roy B S. Joining dissimilar grade aluminum alloy sheets using multi-hole dieless friction stir riveting process
[J]. The International Journal of Advanced Manufacturing Technology, 2020, 112(1-2): 285-302.

 


[6]李琛, 王和斌, 欧平, 等. 7075铝合金热变形行为和组织演变
[J]. 金属热处理, 2023, 48(6): 147-156.

 

Li C, Wang H B, Ou P, et al. Hot deformation behavior and microstructure evolution of 7075 aluminum alloy
[J]. Heat Treatment of Metals, 2023, 48(6): 147-156.

 


[7]刘书潭, 邹龙江, 黄一川, 等. 时效处理对7075铝合金组织及性能的影响
[J]. 热加工工艺, 2023, 52(16): 154-158.

 

Liu S T, Zou L J, Huang Y C, et al. Effects of aging treatment on microstructure and properties of 7075 aluminum alloy
[J]. Hot Working Technology, 2023, 52(16): 154-158.

 


[8]唐鹏, 黄嘉良, 刘倩男, 等. 时效时间对7075-T6铝合金组织与性能的影响
[J]. 金属热处理, 2023, 48(7): 131-137.

 

Tang P, Huang J L, Liu Q N, et al. Effect of aging time on microstructure and properties of 7075-T6 aluminum alloy
[J]. Heat Treatment of Metals, 2023, 48(7): 131-137.

 


[9]王家毅. AA7021铝合金薄板强韧化机制及时效稳定性研究
[D]. 北京:北京科技大学, 2019.

 

Wang J Y. The Mechanism Research of Strength, Toughness and Ageing Stability of AA7021 Aluminum Alloy Thin Plates
[D]. Beijing:University of Science and Technology Beijing, 2019.

 


[10]Liao B, Wu X D, Yan C J, et al. Microstructure characterization of Al-cladded Al-Zn-Mg-Cu sheet in different hot deformation conditions
[J].Transactions of Nonferrous Metals Society of China, 2017, 27: 1689-1697.

 


[11]杨超, 王继杰, 韩培培, 等. 包铝层对7B04-O铝合金薄板搅拌摩擦搭接性能影响
[J]. 机械工程学报, 2015, 1(22): 54-59.

 

Yang C, Wang J J, Han P P, et al. Effect of Al clad layer on friction stir lap welded 7B04-O Al sheet
[J]. Journal of Mechanical Engineering, 2015, 1(22): 54-59.

 


[12]Chen G, Li J T, Yu H L, et al. Investigation on bonding strength of steel/aluminum clad sheet processed by horizontal twin-roll casting, annealing and cold rolling
[J]. Materials & Design, 2016, 112: 263-274.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9