[1]魏立新,王恒,孙浩,等.基于改进深度信念网络训练的冷轧轧制力预报[J].计量学报,2021,42 (7):906-912.
Wei L X, Wang H, Sun H, et al. Research on cold rolling force prediction model based on improved deep belief network[J]. Acta Metrologica Sinica,2021,42(7):906-912.
[2]Hu Z Y,Wei Z H,Sun H, et al. Optimization of metal rolling control using soft computing approaches: A review[J].Archives of Computational Methods in Engineering,2019,28(2): 405-421.
[3]Shen S H, Guye D, Ma X P, et al. Multistep networks for roll force prediction in hot strip rolling mill[J].Machine Learning with Applications,2021,7(4):100245.
[4]郭金涛,王龙,余建波,等.基于深度学习的宽厚板热轧轧制力预测[J].锻压技术,2022,47(7):167-174.
Guo J T, Wang L, Yu J B, et al. Prediction on rolling force in hot rolling of wide and thick plate based on deep learning [J]. Forging & Stamping Technology,2022,47(7):167-174.
[5]崔桂梅,刘伟,张帅,等.基于差分进化支持向量机的轧制力预测[J].中国测试,2021,47(8):83-88.
Cui G M, Liu W, Zhang S, et al. Rolling force prediction based on differential evolution support vector machine[J]. China Measurement & Test,2021,47(8):83-88.
[6]吴爽,闫奕,李爽,等.冷连轧轧制力深度神经网络模型泛化能力并行优化[J].机械设计与制造,2023,(8):171-174.
Wu S, Yan Y, Li S, et al. Parallel optimization of generalization capability of rolling force deep neural network model in tandem cold rolling mill[J]. Machinery Design & Manufacture,2023,(8):171-174.
[7]陈树宗,白芸松,侯佳琦,等.基于GA-FELM算法的冷轧轧制力预测模型[J].燕山大学学报,2022,46(3):224-229.
Chen S Z, Bai Y S, Hou J Q, et al. Rolling force prediction model for cold rolling based on GA-FELM[J]. Journal of Yanshan University,2022,46(3):224-229.
[8]孙浩,赵明达,李静,等.基于LSTM-JITRVM的冷轧轧制力建模方法研究[J].计量学报,2023,44(9):1409-1416.
Sun H,Zhao M D, Li J, et al. Research on modeling method of cold rolling force based on LSTM-JITRVM[J]. Acta Metrologica Sinica, 2023,44(9):1409-1416.
[9]魏立新,翟博豪,赵志伟,等.基于半监督深度网络的冷连轧轧制力预报[J].塑性工程学报,2020,27(11):70-76.
Wei L X, Zhai B H, Zhao Z W, et al. Prediction of cold continuous rolling force based on semi-supervised deep network[J]. Journal of Plasticity Engineering,2020,27(11):70-76.
[10]Liu J Y,Liu X X,Le T B.Rolling force prediction of hot rolling based on GA-MELM[J].Complexity,2019,(2019):1-11.
[11]Wang C L,Zhang M.Research on dynamic rolling force prediction model based on CNN-BN-LSTM[J].Journal of Advanced Mechanical Design, Systems and Manufacturing,2022,16(3):1-14.
[12]李维刚,刘玮汲,谢璐,等.基于图卷积网络的热轧带钢轧制力预测[J].钢铁,2023,58(3):89-96,127.
Li W G, Liu W J, Xie L, et al. Rolling force prediction of hot rolled strip by graph convolutional networks[J]. Iron and Steel,2023,58(3):89-96,127.
[13]欧阳福莲,王俊,周杭霞.基于改进迁移学习和多尺度CNN-BiLSTM-Attention的短期电力负荷预测方法[J].电力系统保护与控制,2023,51(2):132-140.
Ouyang F L, Wang J, Zhou H X. Short-term power load forecasting method based on improved hierarchical transfer learning and multi-scale CNN-BiLSTM-Attention[J]. Power System Protection and Control,2023,51(2):132-140.
[14]那峙雄,孙涛,来广志,等.多尺度特征融合的光伏电站故障诊断[J].计算机工程与应用,2022,58(10):300-308.
Na Z X, Sun T, Lai G Z, et al. Fault diagnosis for photovoltaic power station by multi-scale features fusion[J]. Computer Engineering and Applications,2022,58(10):300-308.
[15]Li M T,Lu Y,Cao S X, et al.A hyperspectral image classification method based on the nonlocal attention mechanism of a multiscale convolutional neural network[J].Sensors,2023,23(6):3190.
[16]梁涛,陈春宇,谭建鑫,等.基于多方面特征提取和迁移学习的风速预测[J].太阳能学报,2023,44(4):132-139.
Liang T, Chen C Y, Tan J X, et al. Wind speed prediction based on multiple feature extraction and transfer learning[J]. Acta Energiae Solaris Sinica,2023,44(4):132-139.
[17]Md Rashedul Islam,Momotaz Begum,Md Nasim Akhtar. Recursive approach for multiple step-ahead software fault prediction through long short-term memory (LSTM)[J].Journal of Discrete Mathematical Sciences and Cryptography,2022,25(7):2129-2138.
[18]Jrges C, Berkenbrink C, Stumpe B.Prediction and reconstruction of ocean wave heights based on bathymetric data using LSTM neural networks[J].Ocean Engineering,2021,232: 109046.
[19]贾睿,杨国华,郑豪丰,等.基于自适应权重的CNN-LSTMGRU组合风电功率预测方法[J].中国电力,2022,55(5):47-56,110.
Jia R, Yang G H, Zheng H F, et al. Combined wind power prediction method based on CNN-LSTM&GRU with adaptive weights[J]. Electric Power,2022,55(5):47-56,110.
|