网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
离合器毂齿滚打成形损伤裂纹的预测及工艺改进特种成形
英文标题:Prediction of damage cracks and process improvement in roll-beating for clutch hub teeth
作者:刘健1 2 侯玉秋1 薛锐3 胡占雄3 安法金1 王程皓1 董守骏1 
单位:1.天津工业大学 机械工程学院 2.天津工业大学 工程教学实习训练中心  3.天津市天海同步科技有限公司 
关键词:离合器毂齿 滚打成形 断裂准则 裂纹预测 韧性断裂 
分类号:TG335
出版年,卷(期):页码:2024,49(6):161-171
摘要:

针对离合器毂齿在滚打成形后沿毂齿侧壁根部容易出现局部裂纹的问题,采用数值模拟和实验相结合的方法分析了裂纹的产生机理。对离合器毂齿材料S420MC钢进行拉伸实验,得到其应力-应变曲线,结合ABAQUS中建立的材料本构模型,得到材料应力三轴度-断裂应变对应关系,并采用模拟退火算法确定了Johnson-Cook材料损伤起始准则参数。基于ABAQUS联合韧性损伤起始准则和Johnson-Cook材料损伤起始准则进行模拟,发现毂齿根部的裂纹与实际情况相同,通过工艺参数优化,消除了工件的裂纹。最后,基于优化后的工艺参数进行实际生产加工,工件未出现裂纹。优化工艺在保证产品质量的同时,提高了生产效率。

For the problem of local cracks easily appeared along the root of hub tooth sidewall after roll-beating of clutch hub teeth,  the generation mechanism of cracks was analyzed by the combination method of numerical simulation and experiment. The tensile experiment of S420MC steel material for the clutch hub teeth was conducted, and the stress-strain curve was obtained. Combined with the constitutive model of material established in ABAQUS,  the corresponding relationship between stress triaxiality and fracture strain was obtained. Furthermore, the parameters of Johnson-Cook material damage initiation criteria were determined by using the simulated annealing algorithm. Based on the combined toughness damage initiation criteria and Johnson-Cook material damage initiation criteria in ABAQUS, it is found that the cracks in the root of hub tooth are consistent with the actual situation. Through the optimization of process parameters, the cracks of workpiece   are eliminated. Finally,the actual production were carried out based on the optimized process parameters, and there were no cracks in the workpiece. Thus, the optimized process not only guarantees the product quality, but also improves the production efficiency.

基金项目:
教育部高等学校工程训练教学指导委员会教育科学研究项目(JJ-GX-JY202134)
作者简介:
作者简介:刘健(1985-),男,工学博士,高级实验师,E-mail:liujian3286@126.com;通信作者:薛锐(1987-),男,学士,工程师,E-mail:xuerui@tanhas.com
参考文献:

[1]梁小明, 吴神丽, 刘凌, 等.不同滚打方式下滚打变形力的实验研究[J]. 机械设计与制造工程, 2021, 50(3): 109-112.


Liang X M, Wu S L, Liu L, et al. Experimental study on deformation force of roll-beating under different rolling ways [J]. Mechine Design and Manufacturing Engineering, 2021, 50(3): 109-112.

[2]李文超. 微观机制断裂理论在高强钢材料及钢结构断裂预测分析中的应用研究[D]. 西安: 长安大学, 2017.

Li W C. Research on Application of Micro-mechanism Based Fracture Theory in Fracture Prediction Analysis of High-strength Steel and Structures [D]. Xi′an: Chang′an University, 2017. 

[3]黄建科. 金属成形过程的细观损伤力学模型及韧性断裂准则研究[D]. 上海:上海交通大学, 2009.

Huang J K. Study on Meso-damage Model and Ductile Fracture Criterion in Metal Forming Processes[D]. Shanghai: Shanghai Jiaotong University, 2009. 

[4]高付海, 桂良进, 范子杰. 基于韧性准则的金属板料冲压成形断裂模拟[J]. 工程力学, 2010, 27(2): 204-208.

Gao F H, Gui L J, Fan Z J. Numerical simulation of the fracture in sheet metal stamping based on ductile criterion [J]. Engineering Mechanics, 2010, 27(2): 204-208. 

[5]郑娜. 基于塑性损伤理论的延性金属裂纹扩展模拟[J]. 科技创新导报, 2012,(28): 96-97.

Zheng N. Simulation of ductile metal crack growth based on plastic damage theory [J]. Science and Technology Innovation Herald, 2012,(28): 96-97.

[6]周梦成, 冯飞, 胡建华, 等. AZ31B镁合金断裂应变与应力三轴度的关系研究[J]. 中国机械工程, 2015, 26(5): 694-698.

Zhou M C, Feng F, Hu J H, et al. Research on relationship of AZ31B magnesium alloy fracture strain and stress triaxiality [J]. China Mechanical Engineering, 2015, 26(5): 694-698.

[7]彭辉, 裴晓阳, 陈实, 等. 延性金属动态拉伸断裂的损伤演化研究[J]. 中国科学: 物理学、力学、天文学, 2017, 47(7): 8-18.

Peng H, Pei X Y, Chen S, et al. Damage evolution on dynamic tensile fracture of ductile metals [J]. Scientia Sinica Physica,Mechanica & Astronomica, 2017, 47(7): 8-18.

[8]夏琴香, 周立奎, 肖刚锋, 等. 金属剪切旋压成形时的韧性断裂准则[J]. 机械工程学报, 2018, 54(14): 66-73.

Xia Q X, Zhou L K, Xiao G F, et al. Ductile fracture criterion for metal shear spinning [J]. Journal of Mechanical Engineering, 2018, 54(14): 66-73.

[9]贾哲, 穆磊, 臧勇. 金属塑性成形中的韧性断裂微观机理及预测模型的研究进展[J]. 工程科学学报, 2018, 40(12): 1454-1467.

Jia Z, Mu L, Zang Y. Research progress on the micro-mechanism and prediction models of ductile fracture in metal forming [J]. Chinese Journal of Engineering, 2018, 40(12): 1454-1467.

[10]肖志菲, 郭树标, 荆传智, 等. 微成形中金属材料韧性断裂行为研究综述[J]. 塑性工程学报, 2021, 28(4): 9-23.

Xiao Z F, Guo S B, Jing C Z, et al. A review on ductile fracture behavior of metallic materials in microforming [J]. Journal of Plasticity Engineering, 2021, 28(4): 9-23.

[11]伍星星, 孟利平, 刘建湖, 等. 应力三轴度对船用钢断裂破坏的影响机理分析[J]. 船舶力学, 2022, 26(4): 547-556.

Wu X X, Meng L P, Liu J H, et al. Influence of stress triaxiality on fracture characteristics of ship building steel [J]. Journal of Ship Mechanics, 2022, 26(4): 547-556. 

[12]陶港. 基于分叉理论及损伤理论的金属塑性成形裂纹发生预测[D]. 秦皇岛: 燕山大学, 2022.

Tao G. Prediction of Metal Plastic Forming Crack Based on Bifurcation Theory and Damage Theory [D]. Qinhuangdao: Yanshan University, 2022. 

[13]贾东昇, 何涛, 霍元明, 等.金属塑性损伤力学模型研究进展[J]. 塑性工程学报, 2022, 29(1): 11-17.

Jia D S, He T, Huo Y M, et al. Review on development of mechanics model of metal ductile damage [J]. Journal of Plasticity Engineering, 2022, 29(1): 11-17. 

[14]杨丽, 董欣欣, 刘丽萍. 薄板坯连铸连轧生产含铌汽车结构钢的开发[J]. 锻压技术, 2022, 47(6): 148-152.

Yang L, Dong X X, Liu L P. Development on niobium-containing automotive structural steel produced by thin slab continuous casting and rolling [J]. Forging & Stamping Technology, 2022, 47(6): 148-152. 

[15]伍杰, 李理, 刘乐青, 等. 基于工艺参数的镀层金属板冲压成形断裂失效窗口[J]. 锻压装备与制造技术, 2018, 53(5): 59-62.

Wu J, Li L, Liu L Q, et al. Fracture failure window of coated sheet metal during stamping process on the basis of process parameters [J]. China Metalforming Equipment & Manufacturing Technology, 2018, 53(5): 59-62.

[16]梅欣华. 金属成形过程断裂行为的数值模拟技术研究[D]. 秦皇岛: 燕山大学, 2011.

Mei X H. Studh on Numerical Simulation Technology of Fracture Behavior in Metal Forming Process [D]. Qinhuangdao: Yanshan University, 2011.

[17]曹可. 基于全耦合理论研究应变路径对金属板材损伤演化的影响规律[D]. 济南: 山东大学, 2019.

Cao K. Research on the Influence of Strain Paths on Damage Evolution of Sheet Metal Based on Fully Coupled Theory [D].Jinan:Shandong University, 2019. 

[18]余万千, 郁锐, 崔世堂. 考虑应力三轴度影响的30CrMnSiNi2A钢韧性断裂研究[J]. 爆炸与冲击, 2021, 41(3): 47-54.

Yu W Q, Yu R, Cui S T. On ductile fracture of 30CrMnSiNi2A steel considering effects of stress triaxiality [J]. Explosion and Shock Waves, 2021, 41(3): 47-54.

[19]詹梅, 李锐, 郑泽邦, 等. 旋压成形损伤断裂缺陷预测研究进展[J]. 精密成形工程, 2019, 11(5): 13-20.

Zhan M, Li R, Zheng Z B, et al. Research progress on fracture prediction in spin-forming [J]. Journal of Netshape Forming Engineering, 2019, 11(5): 13-20. 

[20]Cao T S, Gachet J M, Montmitonnet P, et al. A lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality[J]. Engineering Fracture Mechanics, 2014, 124-125:80-96.

[21]Srinivasan D, Sevvel P, Solomon I J, et al. A review on cold metal transfer (CMT) technology of welding[J]. Materials Today: Proceedings, 2022, 64(1):108-115.

[22]Gachet J M, Delattre G, Bouchard P O. Fracture mechanisms under monotonic and non-monotonic low lode angle loading[J]. Engineering Fracture Mechanics, 2014, 124-125: 121-141.

[23]Gachet J M, Delattre G, Bouchard P O. Improved fracture criterion to chain forming stage and in use mechanical strength computations of metallic parts-Application to half-blanked components[J]. Journal of Materials Processing Technology, 2015, 216: 260-277.

[24]Blaschke D N, Nguyen T, Nitol M, et al. Machine learning based approach to predict ductile damage model parameters for polycrystalline metals[J]. Computational Materials Science, 2023, 229: 112382.

[25]Nezhad M S S, Aboutalebi F H. Assessment of damage evolution behavior in different ductile sheet metals and shapes by the Lemaitre′s ductile damage model[J]. Engineering Failure Analysis, 2022, 139: 106509.

[26]Ganjiani M. A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and lode angle[J]. European Journal of Mechanics-A/Solids, 2020, 84: 104048.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9