网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Ti60钛合金扩散连接界面组织及剪切性能
英文标题:Microstructure and shear properties of diffusion bonding interface for Ti60 titanium alloy
作者:廖子颖1 李保永1 刘伟1 秦中环1 吴迪鹏2 吴腾飞2 武永2 
单位:1.北京航星机器制造有限公司 2.南京航空航天大学 
关键词:Ti60钛合金 扩散连接  剪切强度  界面组织 焊合率 
分类号:TG131
出版年,卷(期):页码:2024,49(6):172-178
摘要:

在保温温度为900~960 ℃、保压压力为1~3 MPa、保温保压时间为0.5~3.0 h的条件下Ti60钛合金进行了扩散连接试验,测得扩散连接界面的剪切强度,并采用金相法测定了扩散连接界面的焊合率,分析了扩散连接条件对原始板材轧制方向室温拉伸性能的影响。试验结果表明:随着保温温度、保压压力增大以及保温保压时间延长,Ti60钛合金板材扩散连接界面的焊合率增加,剪切强度增大;在960 ℃/2 MPa/2 h的试验条件下,焊合率达到98.5%,剪切强度达到559.6 MPa。Ti60钛合金板材经940 ℃/2 h高温保温后,室温抗拉强度由1154.5 MPa降低至994.1 MPa;保温温度达到940 ℃后,升高温度和延长保温保压时间对Ti60钛合金的室温强度影响不大。

The diffusion bonding experiments of Ti60 titanium alloy were carried out under the conditions of the holding temperature of 900-960 ℃, the holding pressure of 1-3 MPa and the holding time of 0.5-3.0 h. The shear strength of diffusion bonding interface was measured, and the bonding rate of diffusion bonding interface was measured by metallographic method. The effect of diffusion bonding conditions on the tensile properties of original sheet at room temperature in the rolling direction was analyzed. The experiment results show that the bonding rate and the shear strength of diffusion bonding interface for Ti60 titanium alloy sheet increase with the increasing of holding temperature, holding pressure and holding time. The bonding rate  reaches 98.5% and the shear strength reaches 559.6 MPa under the experiment condition of 960 ℃/2 MPa/2 h. The tensile strength of Ti60 titanium alloy sheet at room temperature decreases from 1154.5 MPa to 994.1 MPa after holding at 940 ℃ for two hours. When the holding temperature reaches 940 ℃, increasing the temperature and holding time have little effect on the strength of Ti60 titanium alloy at room temperature.

基金项目:
国家重点研发计划资助项目(2023YFB3407000);国防基础科研计划(JCKY2021204A004)
作者简介:
作者简介:廖子颖(1998-),男,硕士研究生,E-mail:1821946291@qq.com;通信作者:李保永(1984-),男,博士,正高级工程师,E-mail:libaoyonght239@163.com
参考文献:

[1]周贤军, 武永, 秦中环, 等. TA15/Ti2AlNb扩散连接界面组织及变形研究[J]. 塑性工程学报, 2022, 29(9): 120-126.


Zhou X J, Wu Y, Qin Z H, et al. Study on interface microstructure and deformation during the diffusion bonding of TA15/Ti2AlNb[J]. Journal of Plasticity Engineering, 2022, 29(9): 120-126.

[2]吴迪鹏, 武永, 周贤军, 等. TC4钛合金点阵/4层混合结构舵翼超塑成形/扩散连接工艺[J]. 塑性工程学报, 2022, 29(5): 92-97.

Wu D P, Wu Y, Zhou X J, et al. SPF/DB process of rudder wing with lattice/four-sheet hybrid structure of TC4 titanium alloy[J]. Journal of Plasticity Engineering, 2022, 29(5): 92-97.

[3]Lütjering G, Williams J C. Titanium [M]. 2nd Edition. Berlin Heidelberg: Springer, 2007.

[4]Wang B N, Zeng W D, Zhao Z B, et al. Effect of micro-texture and orientation incompatibility on the mechanical properties of Ti60 alloy[J]. Materials Science and Engineering: A, 2023, 881: 145419.

[5]李保永, 秦中环, 刘伟, 等. Ti60/TA15合金四层结构舵面超塑成形/扩散连接技术研究[J]. 航空制造技术, 2019, 62(8): 76-80.

Li B Y, Qin Z H, Liu W, et al. Research on superplastic forming/diffusion bonding for four-sheet structure rudder of Ti60/TA15 alloy[J]. Aeronautical Manufacturing Technology, 2019, 62(8): 76-80.

[6]Jia W J, Zeng W D, Zhou Y G, et al. High-temperature deformation behavior of Ti60 titanium alloy[J]. Materials Science and Engineering: A, 2011, 528(12): 4068-4074.

[7]Jia W J, Zeng W D, Liu J R, et al. On the influence of processing parameters on microstructural evolution of a near alpha titanium alloy[J]. Materials Science and Engineering: A, 2011, 530: 135-143.

[8]Moiseyev V N. Titanium Alloys: Russian Aircraft and Aero-space Applications[M]. Florida: CRC Press, 2006.

[9]刘莹莹, 陈子勇, 金头男, 等. 600 ℃高温钛合金发展现状与展望[J]. 材料导报, 2018, 32(11): 1863-1869.

Liu Y Y, Chen Z Y, Jin T N, et al. Present situation and prospect of 600 ℃ high-temperature titanium alloys[J]. Materials Reports, 2018, 32(11): 1863-1869.

[10]于卫新, 李淼泉, 胡一曲. 材料超塑性和超塑成形/扩散连接技术及应用[J]. 材料导报, 2009, 23(11): 8-14.

Yu W X, Li M Q, Hu Y Q. Superplasticity and application of superplastic forming/diffusion bonding technology[J]. Materials Reports, 2009, 23(11): 8-14.

[11]刘继雄, 王文君, 黄拓, 等. 扩散连接工艺对SP-700钛合金热轧板连接界面结合性能的影响[J]. 机械工程材料, 2020, 44(8): 23-26.

Liu J X, Wang W J, Huang T, et al. Effect of diffusion bonding process on connection interface bonding property of SP-700 titanium alloy hot rolled sheet[J]. Materials for Mechanical Engineering, 2020, 44(8): 23-26.

[12]Hamilton C H. Titanium Science and Technology [M]. New York: Plenum Press, 1973.

[13]吴会平. 钛合金扩散连接的界面力学性能及机理研究[D]. 上海: 上海交通大学, 2020.

Wu H P. Study on Mechanical Properties and Mechanism of Diffusion Bonding Joint for Titanium Alloys[D]. Shanghai: Shanghai Jiaotong University, 2020.

[14]GB/T 6396—2008, 复合钢板力学及工艺性能试验方法[S].

GB/T 6396—2008, Clad steel plates—Mechanical and technological test[S].
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9