[1]徐继罗, 孙守田, 钱海峰. H13热作模具钢开裂失效问题分析[J]. 锻造与冲压, 2020, 474(1): 58-60.
Xu J L, Sun S T, Qian H F. Analysis of cracking failure of H13 die steel[J]. Forging & Metalforming, 2020, 474(1): 58-60.
[2]谭成, 马党参, 王华昆,等. H13钢压铸模具的失效分析[J]. 机械工程材料, 2016, 40(1): 106-110.
Tan C, Ma D S, Wang H K, et al. Failure analysis of a die casting die made of H13 steel[J]. Materials for Mechanical Engineering, 2016, 40(1): 106-110.
[3]陈淑平, 冀国良. H13钢模具失效分析及解决措施[J]. 金属加工:热加工, 2011, 646(19):55-57.
Chen S P, Ji G L. Failure analysis and solution measures for H13 steel dies[J]. MW Metal Forming, 2011, 646(19):55-57.
[4]朱斌, 张全新, 张海平,等. H13齿轮热锻模具失效分析[J]. 工程技术研究, 2021, 6(7): 147-148,251.
Zhu B, Zhang Q X, Zhang H P, et al. Failure analysis of H13 gear hot forging die[J]. Engineering and Technological Research, 2021, 6(7): 147-148,251.
[5]黄南乡. H13挤压模具失效分析[J]. 南方金属, 2020, 237(6): 20-23,36.
Huang N X. Failure analysis of extrusion die H13[J]. Southern Metals, 2020, 237(6): 20-23,36.
[6]金飞翔, 董奇, 徐梦洁, 等. 基于有限元铝合金复杂精密锻造模具失效分析及优化[J]. 锻压技术,2023, 48(2): 180-184.
Jin F X, Dong Q, Xu M J, et al. Failure analysis and optimization on aluminum alloy complex precision forging die based on finite element [J]. Forging & Stamping Technology, 2023, 48(2): 180-184.
[7]利义旭, 杨耀祥, 刘梅华,等. 高速热镦锻用H13顶出器模具失效分析及工艺改进[J]. 南方金属, 2022, 248(5): 5-8.
Li Y X, Yang Y X, Liu M H, et al. Failure analysis and process improvement of H13 ejector die for high-speed hot upsetting[J]. Southern Metals, 2022, 248(5): 5-8.
[8]姚宏康, 曹立军, 冯明明. 汽车零件模具H13钢失效分析及预防措施[J]. 模具制造, 2020, 20(9): 86-89.
Yao H K, Cao L J, Feng M M. Failure analysis and preventive measures of H13 automobile parts die[J]. Die & Mould Manufacture, 2020, 20(9): 86-89.
[9]赵亮, 张恒, 范永革. 4Cr5MoSiV1热挤压模具失效分析[J].热处理,2018,33(4):48-51.
Zhao L, Zhang H, Fan Y G. Failure analysis of 4Cr5MoSiV1 steel hot extrusion die [J]. Heat Treatment, 2018, 33(4):48-51.
[10]Kchaou M, Elleuch R, Desplanques Y, et al. Failure mechanisms of H13 die on relation to the forging process-A case study of brass gas valves[J]. Engineering Failure Analysis, 2010, 17(2): 403-415.
[11]Ding R G, Yang H B, Li S Z, et al. Failure analysis of H13 steel die for high pressure die casting Al alloy[J]. Engineering Failure Analysis, 2021, 124: 105330.
[12]卢国辉, 黄拿灿, 黄惠平. H13铝型材挤压模具早期开裂失效分析[J]. 模具工业, 2001,(4): 48-51.
Lu G H, Huang N C, Huang H P. Analysis of early crack failure of the extrusion die of H13 steel for Al profiles[J]. Die & Mould Industry, 2001,(4): 48-51.
[13]焦国祥, 张小聪, 陈国辉. H13钢热挤压模开裂分析[J]. 理化检验:物理分册, 2010, 46(11): 728-730.
Jiao G X, Zhang X C, Chen G H. Cracking analysis of H13 steel hot extrusion die[J]. Physical Testing and Chemical Analysis,Part A:Physical Testing, 2010, 46(11): 728-730.
[14]程俊伟, 谷刘磊, 陈喜乐, 等. 滑动叉热锻模失效分析和解决措施[J]. 锻压技术, 2023, 48(12): 212-216.
Cheng J W, Gu L L, Chen X L, et al. Failure analysis and solution measures of sliding fork hot forging die [J]. Forging & Stamping Technology, 2023, 48(12): 212-216.
[15]陈琳. 基于4Cr5MoSiV1材质的磁轭温挤压模具失效有限元分析[J]. 模具制造, 2016, 16(11): 67-70.
Chen L. Finite element analysis of magnetic yoke temperature extrusion die failure based on 4Cr5MoSiV1 material[J]. Die & Mould Manufacture, 2016, 16(11): 67-70.
[16]刘红丽, 薛克敏, 左标,等. H13等径角挤压模具早期失效分析及结构优化方案[J]. 制造技术与机床, 2016, 645(3): 133-137.
Liu H L, Xue K M, Zuo B, et al. Analysis on early failure and optimization scheme of H13 die for equal channel angular pressing[J]. Manufacturing Technology & Machine Tool, 2016, 645(3): 133-137.
[17]Emamverdian A A, Sun Y, Cao C P, et al. Current failure mechanisms and treatment methods of hot forging tools (dies)-A review[J]. Engineering Failure Analysis, 2021,129:105678.
[18]GB/T 1299—2014, 工模具钢[S].
GB/T 1299—2014, Tool and mould steels [S].
[19]GB/T 230.1—2018, 金属材料洛氏硬度试验第1部分: 试验方法[S].
GB/T 230.1—2018, Metallic materials—Rockwell hardness test—Part 1:Test method[S].
[20]NADCA 207—2016, Special quality die steel & heat treatment acceptance criteria for die casting dies[S].
[21]GB/T 14979—1994, 钢的共晶碳化物不均匀度评定法[S].
GB/T 14979—1994, Eutectic carbide of steel—Micrographic method using standard diagrams[S].
[22]JB/T 8420—2008, 热作模具钢显微组织评级[S].
JB/T 8420—2008, Microstructure grading of hat die steel [S].
[23]李炯辉, 林德成. 金属材料金相图谱[M]. 北京: 机械工业出版社, 2006.
Li T H, Lin D C. Metallographic Atlas of Metallic Materials [M]. Beijing: China Machine Press, 2006.
[24]田玉新, 蔡海燕, 支玉明,等. 影响H13芯棒钢冲击韧性的因素分析[J]. 宝钢技术, 2009,(5): 22-26.
Tian Y X, Cai H Y, Zhi Y M, et al. Analysis of factors influencing H13 mandrel steel′s impact toughness [J]. Baosteel Technology, 2009,(5): 22-26.
[25]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].
[26]GB/T 229—2020, 金属材料夏比摆锤冲击试验方法[S].
GB/T 229—2020, Metallic materials—Charpy pendulum impact test method[S].
[27]马党参, 周健, 张忠侃,等. 电渣重熔速度对H13钢组织和冲击性能的影响[J]. 钢铁, 2010, 45(8): 80-84.
Ma D S, Zhou J, Zhang Z K, et al. Effect of the melting rate of ESR on the microstructure and impact properties of H13 steel[J]. Iron and Steel, 2010, 45(8): 80-84.
[28]李永灯, 杨娥, 周杨,等. H13钢模块横向冲击功不合格原因[J]. 理化检验:物理分册, 2022, 58(2): 62-65.
Li Y D, Yang E, Zhou Y, et al. Reasons for unqualified transverse impact energy of H13 steel module[J]. Physical Testing and Chemical Analysis,Part A:Physical Testing, 2022, 58(2): 62-65.
[29]麻梦梅, 雷大俊. H13钢热处理工艺及研究现状[J].热处理技术与装备, 2023, 44(1): 13-16.
Ma M M, Lei D J. Heat treatment process and research status of H13 steel[J]. Heat Treatment Technology and Equipment, 2023, 44(1): 13-16.
[30]陈朔, 陈学敏, 徐祺昊,等. 淬、回火温度对含铈H13钢组织及硬度的影响[J]. 金属热处理, 2023, 48(6): 36-40.
Chen S, Chen X M, Xu Q H, et al. Effect of quenching and tempering temperature on microstructure and hardness of hardened H13 steel with Ce [J]. Heat Treatment of Metals, 2023, 48(6): 36-40.
|