网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
H13钢有环夹板热锻模具早期失效试验与仿真研究
英文标题:Experimental and simulation study on early failure of hot forging mold for H13 steel ring splint
作者:闫涛1 唐恬悦2 祁海胜1 乔金芳1 杨智勇2 
单位:1.宝鸡保德利电气设备有限责任公司 2.北京交通大学 
关键词:H13钢 热锻模具 失效分析 裂纹 热处理工艺 
分类号:TG315.2
出版年,卷(期):页码:2024,49(6):197-207
摘要:

为解决H13钢有环夹板热锻模具在使用过程中频繁出现早期裂纹而失效的问题,结合有环夹板模具的失效形式及部位,使用直读光谱仪、洛氏硬度计、光学显微镜和扫描电镜分别对所取试样的材料成分、硬度和金相组织等进行了分析。同时,通过拉伸测试和冲击测试检验了材料的力学性能,并结合有限元仿真分析和讨论了H13钢有环夹板热锻模具的失效原因。最后,针对模具的失效原因进行了热处理工艺优化。结果表明,模具早期失效的主要原因为模具材料组织偏析且有较多共晶碳化物夹杂,同时存在回火不充分的现象,导致了马氏体残留,M-A组织在回火时未能充分转变,导致回火后硬度不足和不均,且模具锻造过程中在失效部位存在较大的应力集中,超出了材料的疲劳强度,造成了模具的变形和早期开裂。优化后的热处理工艺为:1060 ℃淬火+580 ℃第1次回火+180 ℃第2次回火,材料强度显著提高,其中抗拉强度提高约28%,屈服强度提高约58%。

In order to solve the failure problem of hot forging mold for H13 steel ring splint due to frequent early cracks in the process of using, combined with the failure forms and parts of ring splint mold, the material composition, hardness and metallurgical organization of the taken specimens were analyzed by using direct-reading spectrometer, Rockwell hardness tester, optical microscope and scanning electron microscope, respectively. At the same time, the mechanical properties of material were examined by tensile test and impact test, and the failure causes of hot forging mold for H13 steel ring splint were analyzed and discussed by combination of finite element simulation analysis. Finally, the optimization of heat treatment process was carried out for the causes of mold failure. The results show that the main reason for the early failure of mold is the organization segregation and more eutectic carbide inclusions in mold material, and at the same time, the phenomenon of insufficient tempering, results in martensite residue, M-A organization in the tempering failed to fully transform, resulting in the insufficient and uneven tempered hardness, and there is a large concentration of stress in the failure part of the mold during forging, which exceeds the fatigue strength of the material, resulting in the deformation and early cracking of the mold. Optimized heat treatment process is quenching at 1060 ℃ + 1st tempering at 580 ℃ + 2nd tempering at 180 ℃, and the material strength is significantly improved, while the tensile strength increases by about 28% and the yield strength increases by about 58%.  

基金项目:
国家自然科学基金面上项目(52372345)
作者简介:
作者简介:闫涛(1984-),男,学士,副高级工程师,E-mail:ceeyantao@126.com;通信作者:杨智勇(1975-),男,博士,教授,E-mail:zhyyang@bjtu.edu.cn
参考文献:

[1]徐继罗, 孙守田, 钱海峰. H13热作模具钢开裂失效问题分析[J]. 锻造与冲压, 2020, 474(1): 58-60.


Xu J L, Sun S T, Qian H F. Analysis of cracking failure of H13 die steel[J]. Forging & Metalforming, 2020, 474(1): 58-60.

[2]谭成, 马党参, 王华昆,等. H13钢压铸模具的失效分析[J]. 机械工程材料, 2016, 40(1): 106-110.

Tan C, Ma D S, Wang H K, et al. Failure analysis of a die casting die made of H13 steel[J]. Materials for Mechanical Engineering, 2016, 40(1): 106-110.

[3]陈淑平, 冀国良. H13钢模具失效分析及解决措施[J]. 金属加工:热加工, 2011, 646(19):55-57.

Chen S P, Ji G L. Failure analysis and solution measures for H13 steel dies[J]. MW Metal Forming, 2011, 646(19):55-57.

[4]朱斌, 张全新, 张海平,等. H13齿轮热锻模具失效分析[J]. 工程技术研究, 2021, 6(7): 147-148,251.

Zhu B, Zhang Q X, Zhang H P, et al. Failure analysis of H13 gear hot forging die[J]. Engineering and Technological Research, 2021, 6(7): 147-148,251.

[5]黄南乡. H13挤压模具失效分析[J]. 南方金属, 2020, 237(6): 20-23,36.

Huang N X. Failure analysis of extrusion die H13[J]. Southern Metals, 2020, 237(6): 20-23,36.

[6]金飞翔, 董奇, 徐梦洁, 等. 基于有限元铝合金复杂精密锻造模具失效分析及优化[J]. 锻压技术,2023, 48(2): 180-184.

Jin F X, Dong Q, Xu M J, et al. Failure analysis and optimization on aluminum alloy complex precision forging die based on finite element [J]. Forging & Stamping Technology, 2023, 48(2): 180-184.

[7]利义旭, 杨耀祥, 刘梅华,等. 高速热镦锻用H13顶出器模具失效分析及工艺改进[J]. 南方金属, 2022, 248(5): 5-8.

Li Y X, Yang Y X, Liu M H, et al. Failure analysis and process improvement of H13 ejector die for high-speed hot upsetting[J]. Southern Metals, 2022, 248(5): 5-8.

[8]姚宏康, 曹立军, 冯明明. 汽车零件模具H13钢失效分析及预防措施[J]. 模具制造, 2020, 20(9): 86-89.

Yao H K, Cao L J, Feng M M. Failure analysis and preventive measures of H13 automobile parts die[J]. Die & Mould Manufacture, 2020, 20(9): 86-89.

[9]赵亮, 张恒, 范永革. 4Cr5MoSiV1热挤压模具失效分析[J].热处理,2018,33(4):48-51.

Zhao L, Zhang H, Fan Y G. Failure analysis of 4Cr5MoSiV1 steel hot extrusion die [J]. Heat Treatment, 2018, 33(4):48-51.

[10]Kchaou M, Elleuch R, Desplanques Y, et al. Failure mechanisms of H13 die on relation to the forging process-A case study of brass gas valves[J]. Engineering Failure Analysis, 2010, 17(2): 403-415.

[11]Ding R G, Yang H B, Li S Z, et al. Failure analysis of H13 steel die for high pressure die casting Al alloy[J]. Engineering Failure Analysis, 2021, 124: 105330.

[12]卢国辉, 黄拿灿, 黄惠平. H13铝型材挤压模具早期开裂失效分析[J]. 模具工业, 2001,(4): 48-51.

Lu G H, Huang N C, Huang H P. Analysis of early crack failure of the extrusion die of H13 steel for Al profiles[J]. Die & Mould Industry, 2001,(4): 48-51.

[13]焦国祥, 张小聪, 陈国辉. H13钢热挤压模开裂分析[J]. 理化检验:物理分册, 2010, 46(11): 728-730.

Jiao G X, Zhang X C, Chen G H. Cracking analysis of H13 steel hot extrusion die[J]. Physical Testing and Chemical Analysis,Part A:Physical Testing, 2010, 46(11): 728-730.

[14]程俊伟, 谷刘磊, 陈喜乐, 等. 滑动叉热锻模失效分析和解决措施[J]. 锻压技术, 2023, 48(12): 212-216.

Cheng J W, Gu L L, Chen X L, et al. Failure analysis and solution measures of sliding fork hot forging die [J]. Forging & Stamping Technology, 2023, 48(12): 212-216.

[15]陈琳. 基于4Cr5MoSiV1材质的磁轭温挤压模具失效有限元分析[J]. 模具制造, 2016, 16(11): 67-70.

Chen L. Finite element analysis of magnetic yoke temperature extrusion die failure based on 4Cr5MoSiV1 material[J]. Die & Mould Manufacture, 2016, 16(11): 67-70.

[16]刘红丽, 薛克敏, 左标,等. H13等径角挤压模具早期失效分析及结构优化方案[J]. 制造技术与机床, 2016, 645(3): 133-137.

Liu H L, Xue K M, Zuo B, et al. Analysis on early failure and optimization scheme of H13 die for equal channel angular pressing[J]. Manufacturing Technology & Machine Tool, 2016, 645(3): 133-137.

[17]Emamverdian A A, Sun Y, Cao C P, et al. Current failure mechanisms and treatment methods of hot forging tools (dies)-A review[J]. Engineering Failure Analysis, 2021,129:105678.

[18]GB/T 1299—2014, 工模具钢[S].

GB/T 1299—2014, Tool and mould steels [S].

[19]GB/T 230.1—2018, 金属材料洛氏硬度试验第1部分: 试验方法[S].

GB/T 230.1—2018, Metallic materials—Rockwell hardness test—Part 1:Test method[S].

[20]NADCA 207—2016, Special quality die steel & heat treatment acceptance criteria for die casting dies[S].

[21]GB/T 14979—1994, 钢的共晶碳化物不均匀度评定法[S].

GB/T 14979—1994, Eutectic carbide of steel—Micrographic method using standard diagrams[S].

[22]JB/T 8420—2008, 热作模具钢显微组织评级[S].

JB/T 8420—2008, Microstructure grading of hat die steel [S].

[23]李炯辉, 林德成. 金属材料金相图谱[M]. 北京: 机械工业出版社, 2006.

Li T H, Lin D C. Metallographic Atlas of Metallic Materials [M]. Beijing: China Machine Press, 2006.

[24]田玉新, 蔡海燕, 支玉明,等. 影响H13芯棒钢冲击韧性的因素分析[J]. 宝钢技术, 2009,(5): 22-26.

Tian Y X, Cai H Y, Zhi Y M, et al. Analysis of factors influencing H13 mandrel steel′s impact toughness [J]. Baosteel Technology, 2009,(5): 22-26.

[25]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].

[26]GB/T 229—2020, 金属材料夏比摆锤冲击试验方法[S].

GB/T 229—2020, Metallic materials—Charpy pendulum impact test method[S].

[27]马党参, 周健, 张忠侃,等. 电渣重熔速度对H13钢组织和冲击性能的影响[J]. 钢铁, 2010, 45(8): 80-84.

Ma D S, Zhou J, Zhang Z K, et al. Effect of the melting rate of ESR on the microstructure and impact properties of H13 steel[J]. Iron and Steel, 2010, 45(8): 80-84.

[28]李永灯, 杨娥, 周杨,等. H13钢模块横向冲击功不合格原因[J]. 理化检验:物理分册, 2022, 58(2): 62-65.

Li Y D, Yang E, Zhou Y, et al. Reasons for unqualified transverse impact energy of H13 steel module[J]. Physical Testing and Chemical Analysis,Part A:Physical Testing, 2022, 58(2): 62-65.

[29]麻梦梅, 雷大俊. H13钢热处理工艺及研究现状[J].热处理技术与装备, 2023, 44(1): 13-16.

Ma M M, Lei D J. Heat treatment process and research status of H13 steel[J]. Heat Treatment Technology and Equipment, 2023, 44(1): 13-16.

[30]陈朔, 陈学敏, 徐祺昊,等. 淬、回火温度对含铈H13钢组织及硬度的影响[J]. 金属热处理, 2023, 48(6): 36-40.

Chen S, Chen X M, Xu Q H, et al. Effect of quenching and tempering temperature on microstructure and hardness of hardened H13 steel with Ce [J]. Heat Treatment of Metals, 2023, 48(6): 36-40.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9