网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
脉冲电流下7075-T6铝合金的摩擦特性与微观组织摩擦与润滑
英文标题:Friction characteristics and microstructure of 7075-T6 aluminum alloy under pulsed current
作者:钱海旭1 夏建生1 2 窦沙沙1 刘镕滔1 朱春雨1 朱云飞1 
单位:1.盐城工学院 2.燕山大学 
关键词:7075-T6铝合金 脉冲电流 摩擦特性 微观机理 机械磨损 电辅助磨损 
分类号:TG115.5
出版年,卷(期):页码:2024,49(6):208-214
摘要:

在电辅助成形中,结合冲压工艺特点,利用自主研发的脉冲电流摩擦测试平台,研究了脉冲电流密度为0~10 A·mm-2时,7075-T6铝合金与P20钢摩擦副之间摩擦因数的变化规律,分析了磨损表面的三维形貌、微观结构与物相组成。结果表明:电流密度为0~6 A·mm-2时,7075-T6铝合金表面形成致密氧化膜,摩擦因数随着电流密度增加而减小,在电流密度为6 A·mm-2时平均摩擦因数最小,为0.216;电流密度大于6 A·mm-2时,在摩擦热和焦耳热的共同作用下,塑性变形加剧,导致氧化膜破损,摩擦因数随着电流密度的增大而增大。低电流密度(0~6 A·mm-2)时,摩擦过程中机械磨损起主要作用;高电流密度(6~10 A·mm-2)时,摩擦过程中机械磨损和电辅助磨损起主要作用。

In the electrical-assisted forming, combined with the characteristics of stamping process, the variation rule of friction factor between 7075-T6 aluminum alloy and P20 steel rubbing pair at the pulse current density of 0-10 A·mm-2 was studied by using a self-developed pulsed current friction test platform, and the three-dimensional morphology, microstructure and phase composition of the wear surface were analyzed. The results show that the dense oxide film is formed at the surface of 7075-T6 aluminum alloy when the current density is 0-6 A·mm-2, and the friction factor decreases with the increasing of current density. When the current density is 6 A·mm-2, the average friction factor is the smallest, which is 0.216. When the current density is greater than 6 A·mm-2, the plastic deformation is intensified under the combined effect of friction heat and Joule heat, which results in the breakage of the oxide film, and the friction factor increases with the increasing of current density. At the low current densities (0-6 A·mm-2), mechanical wear plays a major role in the friction process, and at the high current densities (6-10 A·mm-2), mechanical and electrical-assisted wear play a major role in the friction process.

基金项目:
国家自然科学基金资助项目(51505408);江苏省产学研前瞻性联合研究项目(BY2022174)
作者简介:
作者简介:钱海旭(1998-),男,硕士研究生,E-mail:1461561806@qq.com;通信作者:夏建生(1980-),男,博士,教授,E-mail:Xiajiansheng@163.com
参考文献:

[1]吴兆辉. 汽车轻量化及铝合金在现代汽车生产中的应用[J]. 内燃机与配件, 2022,(23):106-108.


Wu Z H. Automobile lightweight and application of aluminum alloy in modern automobile production [J]. Internal Combustion Engine & Parts, 2022,(23):106-108.

[2]高景洲, 赵升吨, 杜威, 等. 铝合金板材热冲压成形装备的合理性探讨[J]. 锻压技术, 2022, 47(9): 168-173.

Gao J Z, Zhao S T, Du W, et al. Discussion on rationality of hot stamping equipment for aluminum alloy sheet [J]. Forging & Stamping Technology, 2022, 47(9): 168-173.

[3]韦增磊.浅述铝合金零部件对汽车轻量化的影响[J].中国设备工程,2022,(6):139-141.

Wei Z L. Influence of aluminum alloy parts on automotive lightweighting[J]. China Plant Engineering,2022,(6):139-141.

[4]胡志力,芦俊杰,华林.铝合金热冲压技术研究进展[J].锻压技术,2022,47(2):1-11.

Hu Z L, Lu J J, Hua L. Review of hot stamping technology for aluminum alloy [J]. Forging & Stamping Technology,2022,47(2):1-11.

[5]吴新星,范家春,邢阳,等.铝合金板温成形和热成形技术应用研究[J].轻合金加工技术,2021,49(1):22-28.

Wu X X,Fan J C,Xing Y, et al. Application research of warm & hot deformation technology for aluminum alloys [J]. Light Alloy Fabrication Technology,2021,49(1):22-28.

[6]陈超.脉冲电流密度及施加方向对Ti-6Al-4V合金拉伸性能的影响研究[D].哈尔滨:哈尔滨理工大学, 2022.

Chen C. Study on the Effect of Pulse Current Density and Application Direction on the Tensile Properties of Ti-6Al-4V Alloy [D]. Harbin: Harbin University of Science and Technology, 2022.

[7]赵理想,陈光军,轩文涛,等.难加工金属材料电塑性辅助加工技术[J].塑性工程学报,2022,29(9):11-24.

Zhao L X,Chen G J,Xuan W T,et al.Electroplastically assisted manufacturing technology for hard-to-working metal materials [J].Journal of Plasticity Engineering,2022,29 (9):11-24.

[8]Perkins T A, Kronenberger T J, Roth J T. Metallic forging using electrical flow as an alternative to warm/hot working[J]. Journal of Manufacturing Science and Engineering, 2007, 129 (1): 84-94.

[9]Jiang Y, Tang G, Shek C, et al. Effect of electropulsing treatment on microstructure and tensile fracture behavior of aged Mg-9Al-1Zn alloy strip[J]. Applied Physics A, 2009, 97: 607-615. 

[10]Decrozant-Triquenaux J, Pelcastre L, Courbon C, et al. High temperature tribological behaviour of PVD coated tool steel and aluminium under dry and lubricated conditions [J]. Friction,2020,9(20):802-821.

[11]Liu Y, Zhu Z J, Wang Z J, et al. Flow and friction behaviors of 6061 aluminum alloy atelevated temperatures and hot stamping of a B-pillar[J]. The International Journal ofAdvanced Manufacturing Technology, 2018, 96(3): 4063-4083.

[12]Zhou Y K, Zhu R, Zuo X, et al. Tribo-electrical behaviors of CNTs-MoS2/Cu composites under sliding electrical contact with brass[J]. Tribology International, 2023, 180:108207.

[13]Bao J X, Bai J N, Lyu S D, et al. Interactive effects of specimen size and current density on tribological behavior of electrically-assisted micro-forming in TC4 titanium alloy[J]. Tribology International, 2020, 151: 106457.

[14]Xia J S, Liu R T, Zhao J,et al. Study on friction characteristics of AA7075 aluminum alloy under pulse current-assisted hot stamping[J]. Metals,2023, 13(5):972.

[15]刘镕滔,夏建生,赵军,等.6061铝合金脉冲电流辅助热冲压下的摩擦特性[J].锻压技术,2023,48(6):191-198.

Liu R T, Xia J S, Zhao J,et al. Friction characteristics for 6061 aluminium alloy under pulse current assisted hot stamping[J]. Forging & Stamping Technology,2023,48(6):191-198.

[16]杨正海. 载流摩擦副的电弧损伤机制研究[D].北京:中国机械科学研究总院集团有限公司,2015.

Yang Z H. Research on the Arc Damage Mechanism of Triboelectric Pairs [D]. Beijing:China Academy of Mechinery Science and Technology Group Co., Ltd.,2015.

[17]Abdeldjalil B, Bouchoucha A, Mouadji Y. Effect of electrical current on friction and wear behavior of copper against graphite for low sliding speeds[J]. Mechanical Engineering,2018,80(3):117-130.

[18]惠阳,刘贵民,闫涛,等.载流摩擦磨损研究现状及展望[J].材料导报,2019,33(13):2272-2280.

Hui Y, Liu G M, Yan T,et al. Research status and prospect of current-carrying friction and wear [J]. Materials Reports,2019,33(13):2272-2280.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9