[1]傅蔷. 某装置不锈钢管道渗漏原因分析与对策[J]. 全面腐蚀控制, 2023,37(4):122-124.
Fu Q. Analysis and countermeasures of stainless steel pipe leakage in a certain unit [J]. Total Corrosion Control, 2023,37(4):122-124.
[2]张小丽, 寻懋年, 梁小红, 等. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J].中国腐蚀与防护学报, 2023, 43(2): 384-390.
Zhang X L, Xun M N, Liang X H, et al. Precipitation of second phase and its effect on corrosion resistance of Ce-containing S31254 super austenitic stainless steel [J]. Journal of Chinese Society for Corrosion and Protection, 2023,43 (2): 384-390.
[3]苗华军.时效处理对超级双相不锈钢00Cr29Ni6Mo2N组织和耐点蚀性的影响[J]. 特殊钢, 2021, 42(5):81-84.
Miao H J. Effect of aging treatment on microstructure and pitting corrosion property of 00Cr29Ni6Mo2N super duplex stainless steel [J]. Special Steel, 2021,42 (5): 81-84.
[4]Han X L, Wei P, Zhao Y M, et al. Enhanced pitting corrosion resistance of nanostructured AISI 304 stainless steel via pipe inner surface grinding treatment[J]. Nanomaterials, 2023,13(2): 318-324.
[5]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].
[6]GB/T 229—2020,金属材料夏比摆锤冲击试验方法[S].
GB/T 229—2020, Metallic materials—Charpy pendulum impact test method[S].
[7]GB/T 17897—2016,金属和合金的腐蚀不锈钢三氯化铁点腐蚀试验方法[S].
GB/T 17897—2016, Corrosion of metals and alloys—Corrosion test for pitting corrosion resistance of stainless steels in the ferric chloride solution[S].
[8]赵博, 臧伟, 郜飞, 等. 时效热处理对新型节镍双相不锈钢组织及性能的影响[J]. 钢管, 2023, 52(1):25-29.
Zhao B, Zang W, Gao F, et al. Effect by aging heat treatment on structure and properties of new nickel-saving duplex stainless steel [J]. Steel Pipe, 2023,52 (1): 25-29.
[9]范春华, 李国祥, 李雪莹, 等. AM355不锈钢在酸性溶液中的腐蚀电化学行为[J]. 材料科学与工程学报, 2018,36(1): 121-124,157.
Fan C H, Li G X, Li X Y, et al. Electrochemical corrosion behavior of AM355 stainless steel in acid solution [J]. Journal of Materials Science and Engineering, 2018,36(1): 121-124,157.
[10]唐娴, 张雷, 王竹, 等. SO2-4对含Cl-溶液中316L奥氏体不锈钢钝化行为及点蚀行为的影响[J]. 工程科学学报, 2018, 40(3): 366-372.
Tang X, Zhang L, Wang Z, et al. Effect of SO2-4 on the passive and pitting behavior of 316L austenitic stainless steel in Cl- -containing solution [J]. Chinese Journal of Engineering, 2018, 40(3):366-372.
[11]纪翔, 张汛涛, 宋先捷, 等.不同热处理后航空紧固件用17-4PH钢耐腐蚀性及硬度的研究[J].热加工工艺, 2022, 51(20): 130-136.
Ji X, Zhang X T, Song X J, et al. Study on corrosion resistance and hardness of 17-4PH steel for aviation fasteners after different heat treatment [J]. Hot Working Technology, 2022,51 (20): 130-136.
[12]孙永伟, 范芳雄, 王灵水. 热处理制度对UNS S32750超级双相不锈钢微观组织及腐蚀行为的影响[J].材料热处理学报, 2020, 41(6): 111-120.
Sun Y W, Fan F X, Wang L S. Effect of heat treatment process on microstructure and corrosion behavior of UNS S32750 super duplex stainless steel [J]. Transactions of Materials and Heat Treatment, 2020, 41 (6): 111-120.
[13]Zhao L, Qian H C, Chang W W, et al. Effect of aging heat treatment on microbiologically influenced corrosion of 17-4PH stainless steel by Pseudomonas aeruginosa[J]. Corrosion Science, 2024, 227: 111739-111743.
[14]Ahmad S, Mehta M L, Saraf S K, et al. Electrochemical studies of stress corrosion cracking of sensitized AISI 304 stainless steel in polythionic acids[J]. Corrosion, 2012, 41(6):363-367.
[15]赵兰英, 陈家兴. 时效处理对Cr20Mn18N0.5高氮奥氏体不锈钢组织与力学性能的影响[J].热加工工艺,2020,49(22): 132-134.
Zhao L Y, Chen J X. Effect of aging treatment on microstructure and mechanical properties of Cr20Mn18N0.5 high nitrogen austenitic stainless steel [J]. Hot Working Technology, 2020,49 (22): 132-134. [16]李英, 崔红社, 李爱艳, 等. 时效温度对空调管道用钢耐点蚀性能的影响[J]. 腐蚀与防护, 2023, 44(4):54-58. Li Y, Cui H S, Li A Y, et al. Effects of aging temperature on pitting resistance of steel for air conditioning pipes [J]. Corrosion & Protection, 2023,44 (4): 54-58. [17]Wang G, Chen X, Zhao Y, et al. Effect of temperature on electrochemical corrosion behavior of X70 pipeline steel in high PH solution[J].Corrosion Science and Protection Technology, 2015, 27(3):226-230. [18]刘成龙, 唐正友, 马亮,等. 254SMo超级奥氏体不锈钢时效析出行为及析出相对其力学性能的影响[J].材料导报, 2021, 35(24): 24147-24151. Liu C L, Tang Z Y, Ma L, et al. Investigation on the aging precipitation behavior of 254SMo super austenitic stainless steel and the effect of precipitation on its mechanical properties [J]. Materials Reports, 2021,35 (24): 24147-24151. [19]Huang N L, Tian Y,Yang R, et al. Preparation and cavitation erosion resistance of nanocrystalline surface layer on 304 stainless steels[J]. Surface and Coatings Technology,2024,481:130615-130622. [20]Lin S P, Li D L, Zhou Q Q, et al. Study on corrosion perforation behavior of copper nickel alloy pipe during service in marine environment[J]. Engineering Failure Analysis, 2023, 153: 107628-107645. [21]Cho S, Buchsbaum S F, Biener M, et al. True active surface area as a key indicator of corrosion behavior in additively manufactured 316L stainless steel[J]. Materials & Design,2024,237: 112559-112564. [22]Raphael Frana Assumpo, Renata Mangini Santos, Maria Luísa Oliveira de Sousa, et al. Effect of low aging temperature and the reversion of martensite on the mechanical behavior of a 2304 lean duplex stainless steel[J]. Journal of Materials Science,2023,58(13): 5970-5988. [23]Cheng X Q, Li C T, Dong C F, et al. Constituent phases of the passive film formed on 2205 stainless steel by dynamic electrochemical impedance spectroscopy[J]. International Journal of Minerals Metallurgy and Materials, 2011, 18(1):42-47.
|