网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
高强管道用1Cr16Ni4Mo2N不锈钢的热处理与组织性能研究加热与热处理
英文标题:Study on heat treatment and microstructure and properties of 1Cr16Ni4Mo2N stainless steel for high-strength pipeline
作者:苏宁1 刘凤军1 李月超2 
单位:1.中国石油管道局工程有限公司 2.河南科技大学 
关键词:时效温度 1Cr16Ni4Mo2N不锈钢 显微组织 力学性能 耐腐蚀性能 
分类号:TG142.1;TG161
出版年,卷(期):页码:2024,49(6):215-220
摘要:

为了提升高强管道用不锈钢的力学性能和耐腐蚀性能,对高强管道用1Cr16Ni4Mo2N不锈钢进行了固溶和时效处理,研究了时效温度对不锈钢显微组织、力学性能和耐腐蚀性能的影响,并分析了其作用机理。结果表明,1Cr16Ni4Mo2N不锈钢在350~625 ℃时效处理4 h后,基体组织均为马氏体和奥氏体,且随着时效温度升高,马氏体向奥氏体转变;不锈钢的屈服强度ReL和抗拉强度Rm随着时效温度的升高先增大后减小,在时效温度为350 ℃时具有较高的强塑性。FeCl3溶液中浸泡腐蚀试验结果与电化学试验结果一致,1Cr16Ni4Mo2N不锈钢的腐蚀速率随着时效温度的升高先增大后减小,在时效温度为350 ℃时具有最佳的耐腐蚀性能。因此,高强管道用1Cr16Ni4Mo2N不锈钢最佳的时效温度为350 ℃,此时不锈钢具有良好的强塑性和耐腐蚀性能。

In order to improve the mechanical properties and corrosion resistance properties of stainless steel for high-strength pipelines, the solution and aging treatment on 1Cr16Ni4Mo2N stainless steel for high-strength pipeline was conducted, the influences of aging temperature on the microstructure, mechanical properties and corrosion resistance properties of stainless steel were studied, and its mechanism of action was analyzed. The results show that after aging treatment at 350-625 ℃ for 4 hours, the matrix structures of 1Cr16Ni4Mo2N stainless steel are martensite and austenite, and with the increasing of aging temperature, martensite transforms into austenite. The yield strength ReL and tensile strength Rm of 1Cr16Ni4Mo2N stainless steel first increases and then decreases with the increasing of aging temperature, which has good strength plasticity at the aging temperature of 350 ℃. The results of immersion corrosion test in FeCl3 solution are consistent with those of electrochemical test. The corrosion rate of 1Cr16Ni4Mo2N stainless steel first increases and then decreases with the increasing of aging temperature, and it has the best corrosion resistance property at the aging temperature of 350 ℃. Thus, the optimum aging temperature of 1Cr16Ni4Mo2N stainless steel for high-strength pipeline is 350 ℃, at this time, the stainless steel has good strength and plasticity as well as corrosion resistance property.

基金项目:
河南省科技攻关项目(2102210278);教育部产学合作协同育人项目(221176014)
作者简介:
作者简介:苏宁(1976-),男,学士,工程师,E-mail:suning7611@sina.com
参考文献:

[1]傅蔷. 某装置不锈钢管道渗漏原因分析与对策[J]. 全面腐蚀控制, 2023,37(4):122-124.


Fu Q. Analysis and countermeasures of stainless steel pipe leakage in a certain unit [J]. Total Corrosion Control, 2023,37(4):122-124.

[2]张小丽, 寻懋年, 梁小红, 等. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J].中国腐蚀与防护学报, 2023, 43(2): 384-390.

Zhang X L, Xun M N, Liang X H, et al. Precipitation of second phase and its effect on corrosion resistance of Ce-containing S31254 super austenitic stainless steel [J]. Journal of Chinese Society for Corrosion and Protection, 2023,43 (2): 384-390.

[3]苗华军.时效处理对超级双相不锈钢00Cr29Ni6Mo2N组织和耐点蚀性的影响[J]. 特殊钢, 2021, 42(5):81-84.

Miao H J. Effect of aging treatment on microstructure and pitting corrosion property of 00Cr29Ni6Mo2N super duplex stainless steel [J]. Special Steel, 2021,42 (5): 81-84.

[4]Han X L, Wei P, Zhao Y M, et al. Enhanced pitting corrosion resistance of nanostructured AISI 304 stainless steel via pipe inner surface grinding treatment[J]. Nanomaterials, 2023,13(2): 318-324.

[5]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].

[6]GB/T 229—2020,金属材料夏比摆锤冲击试验方法[S].

GB/T 229—2020, Metallic materials—Charpy pendulum impact test method[S].

[7]GB/T 17897—2016,金属和合金的腐蚀不锈钢三氯化铁点腐蚀试验方法[S].

GB/T 17897—2016, Corrosion of metals and alloys—Corrosion test for pitting corrosion resistance of stainless steels in the ferric chloride solution[S].

[8]赵博, 臧伟, 郜飞, 等. 时效热处理对新型节镍双相不锈钢组织及性能的影响[J]. 钢管, 2023, 52(1):25-29.

Zhao B, Zang W, Gao F, et al. Effect by aging heat treatment on structure and properties of new nickel-saving duplex stainless steel [J]. Steel Pipe, 2023,52 (1): 25-29.

[9]范春华, 李国祥, 李雪莹, 等. AM355不锈钢在酸性溶液中的腐蚀电化学行为[J]. 材料科学与工程学报, 2018,36(1): 121-124,157.

Fan C H, Li G X, Li X Y, et al. Electrochemical corrosion behavior of AM355 stainless steel in acid solution [J]. Journal of Materials Science and Engineering, 2018,36(1): 121-124,157.

[10]唐娴, 张雷, 王竹, 等. SO2-4对含Cl-溶液中316L奥氏体不锈钢钝化行为及点蚀行为的影响[J]. 工程科学学报, 2018, 40(3): 366-372.

Tang X, Zhang L, Wang Z, et al. Effect of SO2-4 on the passive and pitting behavior of 316L austenitic stainless steel in Cl- -containing solution [J]. Chinese Journal of Engineering, 2018, 40(3):366-372.

[11]纪翔, 张汛涛, 宋先捷, 等.不同热处理后航空紧固件用17-4PH钢耐腐蚀性及硬度的研究[J].热加工工艺, 2022, 51(20): 130-136.

Ji X, Zhang X T, Song X J, et al. Study on corrosion resistance and hardness of 17-4PH steel for aviation fasteners after different heat treatment [J]. Hot Working Technology, 2022,51 (20): 130-136.

[12]孙永伟, 范芳雄, 王灵水. 热处理制度对UNS S32750超级双相不锈钢微观组织及腐蚀行为的影响[J].材料热处理学报, 2020, 41(6): 111-120.

Sun Y W, Fan F X, Wang L S. Effect of heat treatment process on microstructure and corrosion behavior of UNS S32750 super duplex stainless steel [J]. Transactions of Materials and Heat Treatment, 2020, 41 (6): 111-120.

[13]Zhao L, Qian H C, Chang W W, et al. Effect of aging heat treatment on microbiologically influenced corrosion of 17-4PH stainless steel by Pseudomonas aeruginosa[J]. Corrosion Science, 2024, 227: 111739-111743.

[14]Ahmad S, Mehta M L, Saraf S K, et al. Electrochemical studies of stress corrosion cracking of sensitized AISI 304 stainless steel in polythionic acids[J]. Corrosion, 2012, 41(6):363-367.

[15]赵兰英, 陈家兴. 时效处理对Cr20Mn18N0.5高氮奥氏体不锈钢组织与力学性能的影响[J].热加工工艺,2020,49(22): 132-134.


Zhao L Y, Chen J X. Effect of aging treatment on microstructure and mechanical properties of Cr20Mn18N0.5 high nitrogen austenitic stainless steel [J]. Hot Working Technology, 2020,49 (22): 132-134.

[16]李英, 崔红社, 李爱艳, 等. 时效温度对空调管道用钢耐点蚀性能的影响[J]. 腐蚀与防护, 2023, 44(4):54-58.

Li Y, Cui H S, Li A Y, et al. Effects of aging temperature on pitting resistance of steel for air conditioning pipes [J]. Corrosion & Protection, 2023,44 (4): 54-58.

[17]Wang G, Chen X, Zhao Y, et al. Effect of temperature on electrochemical corrosion behavior of X70 pipeline steel in high PH solution[J].Corrosion Science and Protection Technology, 2015, 27(3):226-230.

[18]刘成龙, 唐正友, 马亮,等. 254SMo超级奥氏体不锈钢时效析出行为及析出相对其力学性能的影响[J].材料导报, 2021, 35(24): 24147-24151.

Liu C L, Tang Z Y, Ma L, et al. Investigation on the aging precipitation behavior of 254SMo super austenitic stainless steel and the effect of precipitation on its mechanical properties [J]. Materials Reports, 2021,35 (24): 24147-24151.

[19]Huang N L, Tian Y,Yang R, et al. Preparation and cavitation erosion resistance of nanocrystalline surface layer on 304 stainless steels[J]. Surface and Coatings Technology,2024,481:130615-130622.

[20]Lin S P, Li D L, Zhou Q Q, et al. Study on corrosion perforation behavior of copper nickel alloy pipe during service in marine environment[J]. Engineering Failure Analysis, 2023, 153: 107628-107645.

[21]Cho S, Buchsbaum S F, Biener M, et al. True active surface area as a key indicator of corrosion behavior in additively manufactured 316L stainless steel[J]. Materials & Design,2024,237: 112559-112564.

[22]Raphael Frana Assumpo, Renata Mangini Santos, Maria Luísa Oliveira de Sousa, et al. Effect of low aging temperature and the reversion of martensite on the mechanical behavior of a 2304 lean duplex stainless steel[J]. Journal of Materials Science,2023,58(13): 5970-5988.

[23]Cheng X Q, Li C T, Dong C F, et al. Constituent phases of the passive film formed on 2205 stainless steel by dynamic electrochemical impedance spectroscopy[J]. International Journal of Minerals Metallurgy and Materials, 2011, 18(1):42-47.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9