网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于修正J-C本构模型的固溶态7050铝合金中温变形行为研究材料与成形性能
英文标题:Study on middle temperature deformation behavior of solid-solution 7050 aluminum alloy based on modified J-C constitutive model
作者:黎燕1 2 潘成海3 滕海灏3 王敬1 梁强1 
单位:1.重庆工商大学 机械工程学院 2. 重庆工商大学 工程训练中心  3.重庆大学 材料科学与工程学院 
关键词:固溶态7050铝合金 J-C本构模型 中温变形行为 应力 应变 
分类号:TG166.3
出版年,卷(期):页码:2024,49(6):221-226
摘要:

为研究固溶态7050铝合金的中温变形行为,在变形温度为333~523 K、应变速率为0.001~0.1 s-1的条件下进行了中温压缩实验,构建了一种考虑温度和应变速率的修正J-C本构模型。结果表明:在所研究的条件下,当应变在0.1以下时,应力随着应变的增加而增加;当应变在0.1以上时,应力趋于平稳状态。固溶态7050铝合金的温度软化效应显著。对比真实应力-真实应变数据与经典J-C本构模型预测数据、修正J-C本构模型预测数据发现,修正J-C本构模型预测数据与真实应力-真实应变数据的误差在±5%以内,表明修正J-C本构模型具有较高的预测精度和扩展性,可准确地描述固溶态7050铝合金在中温阶段的流动应力特性。

In order to study the middle temperature deformation behavior of solid-solution 7050 aluminum alloy, the middle temperature compression experiments were conducted at the deformation temperature of 333-523 K, the strain rate of 0.001-0.1 s-1, and a modified J-C constitutive model considering temperature and strain rate was established. The results show that under the studied conditions, the stress increases with the increasing of strain when the strain is below 0.1, and tends to be stable when the strain is above 0.1. The temperature softening effect of solid-solution 7050 aluminum alloy is significant. Comparing the data of true stress-true strain with the predicted data of classical J-C constitutive model and modified J-C constitutive model, it is find that the deviation between the  data predicted by modified J-C constitutive model and the true stress-true strain data is within ±5%, indicating that the modified J-C constitutive model has high precision and expansibility. Thus, this model can accurately describe the flow stress characteristics of solid-solution 7050 aluminum alloy in the middle temperature stage.

基金项目:
重庆工商大学教改项目(2022145)
作者简介:
作者简介:黎燕(1989-),女,硕士,中级工程师,E-mail:2023038@ctbu.edu.cn;通信作者:潘成海(1988-),男,硕士,高级工程师,E-mail:443993960@qq.com
参考文献:

[1]姜中涛,汪鑫,周志明,等. 7050铝合金锻件固溶处理工艺优化研究[J]. 精密成形工程,2021,13(6):112-116.


Jiang Z T, Wang X, Zhou Z M, et al. Optimization of solution treatment process for 7050 aluminum alloy forgings[J]. Journal of Netshape Forming Engineering, 2021,13(6):112-116.

[2]王丹青. 7050铝合金航空模锻件T7452工艺研究[D]. 燕山:燕山大学,2019.

Wang D Q. Research on T7452 Process of Aviation Die Forging of 7050 Aluminum Alloy[D]. Qinhuangdao: Yanshan University, 2019.

[3]戴威然,田怡,秦龙万,等. 航空用7150高强铝合金发展现状[J]. 云南冶金,2018,47(3):76-78,88.

Dai W R, Tian Y, Qin L W, et al. The development situation of 7150 high strength aluminum alloy for aviation[J]. Yunnan Metallurgy, 2018,47(3):76-78,88.

[4]贺峰,杨双平,曹继敏,等.冷变形和固溶时效对Ti-25Nb-25Zr合金性能的研究[J].稀有金属,2023,47(7):950-958.

He F,Yang S P,Cao J M,et al. Mechanical properties of Ti-25Nb-25Zr alloy in cold deformation and solution and aging[J]. Chinese Journal of Rare Metals,2023,47(7):950-958.

[5]王德宏. 7050高强铝合金反挤压及固溶时效热处理研究[D]. 济南:山东大学,2022.

Wang D H. Research on Influence of Backward Extrusion and Solution Aging Heat Treatment on 7050 Aluminum Alloy[D]. Jinan: Shandong University, 2022.

[6]袁辉,赵作福,赵宇擎,等. 航空用7050铝合金热处理工艺的研究进展[J]. 辽宁工业大学学报:自然科学版,2022,42(4):223-227.

Yuan H, Zhao Z F, Zhao Y Q, et al. Research progress of heat treatment process of 7050 aluminum alloy for aviation[J]. Journal of Liaoning University of Technology:Natural Science Edition, 2022,42(4):223-227.[7]Ko M,Culp J,Altan T. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes[J]. Journal of Materials Processing Technology,2006, 174(1-3):342-354.

[8]Xu L Z,Zhan L H,Xu Y Q,et al. Thermomechanical pretreatment of Al-Zn-Mg-Cu alloy to improve formability and performance during creep-age forming[J]. Journal of Materials Processing Technology,2021, 293:117089.

[9]吴道祥,林林,陈焕良,等. 固溶温度对7050铝合金组织及性能的影响[J]. 铝加工,2018,241(2):27-34.

Wu D X, Lin L, Chen H L, et al. Effect of solution temperature on microstructure and Mechanical properties of aluminum alloy 7050[J]. Aluminum Fabrication, 2018,241(2):27-34.

[10]Teng H H, Xia Y F, Pan C H, et al. Modified voce-type constitutive model on solid solution state 7050 aluminum alloy during warm compression process[J]. Metals,2023,13(5):989.

[11]陈修梵,彭小燕,张慧颖,等. 7050铝合金热压缩变形的流变行为及微观组织演变[J]. 特种铸造及有色合金,2015,35(12):1237-1242.

Chen X F, Peng X Y, Zhang H Y, et al. Characterization of flow behavior and microstructural evolution of 7050 aluminum alloy during hot compression process[J]. Special Casting & Nonferrous Alloys, 2015,35(12):1237-1242.

[12]贾耀军,周杰,董旭刚,等. 7050-H112铝合金的高温流变行为和动态再结晶[J]. 热加工工艺, 2012,41(4):8-10.

Jia Y J, Zhou J, Dong X G, et al. Hot deformation behavior and dynamic recrystallization of 7050-H112 aluminium alloy[J]. Hot Working Technology, 2012,41(4):8-10.

[13]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics,1983,21:541-548.

[14]龙帅. 合金热变形行为快速求解方法与应用研究[D]. 重庆:重庆大学,2020.

Long S. Research on the Rapid Solution and Analysis Method for Hot Deformation Behavior of Alloys and Its Application[D]. Chongqing: Chongqing University, 2020.

[15]王敬,梁强,李永亮.5A06铝合金的高温变形行为分析及本构模型研究[J].锻压技术,2020,45(8):204-211.

Wang J,Liang Q,Li Y L. Hot deformation behavior analysis and constitutive model study of 5A06 aluminum alloy[J]. Forging & Stamping Technology,2020,45(8):204-211.

[16]辛春亮,薛再清,涂建,等. 有限元分析常用材料参数手册[M]. 北京:机械工业出版社,2020.

Xin C L, Xue Z Q, Tu J, et al. Material Parameters Manual for Finite Element Analysis[M].Beijing:China Machine Press,2020.

[17]叶建华,陈明和,王宁,等.基于修正JC模型的TA12钛合金高温流变的行为[J]. 中国有色金属学报,2019,29(4):733-741.

Ye J H, Chen M H, Wang N, et al. Flow behavior of TA12 titanium alloy based on modified JC model at high temperature[J].The Chinese Journal of Nonferrous Metals,2019,29(4):733-741.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9