网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
新型Fe-22Cr-25Ni奥氏体耐热钢的热变形和动态再结晶行为
英文标题:Thermal deformation and dynamic recrystallization behavior of new Fe-22Cr-25Ni austenitic heat-resistant steel
作者:魏海莲1 2 邓笑举2 蔡勇2 彭浩东2 王健2 端强1 潘红波3 
单位:1.安徽冶金科技职业学院 2.安徽工业大学 材料科学与工程学院  3 安徽工业大学 冶金减排与资源综合利用教育部重点实验室 
关键词:奥氏体耐热钢 热变形 动态再结晶 流变应力 本构模型 
分类号:TG142
出版年,卷(期):页码:2024,49(6):227-238
摘要:

采用等温压缩实验研究了一种新型Fe-22Cr-25Ni奥氏体耐热钢在950~1150 ℃、0.01~10 s-1条件下的热变形和动态再结晶行为。结果表明:新型奥氏体耐热钢的动态再结晶程度随着变形温度的升高明显增大。在0.01~1 s-1应变速率范围内,动态再结晶程度随着应变速率的增大而减小;而在1~10 s-1应变速率范围内,动态再结晶程度随着应变速率的增大而增大。建立了新型奥氏体耐热钢的峰值应力本构模型和应变补偿本构模型,其热变形激活能Q为624.253 kJ·mol-1,高于传统的奥氏体耐热钢。利用应变补偿本构模型预测了新型奥氏体耐热钢的热变形流变应力,计算的相关系数r值为0.985,平均绝对相对误差AARE值为6.07%,表明该本构模型能够准确描述耐热钢的热变形行为。

The thermal deformation and dynamic recrystallization behavior of a new Fe-22Cr-25Ni austenitic heat-resistant steel were studied by isothermal compression experiment at the temperature of 950-1150 ℃ and the strain rate of 0.01-10 s-1. The results show that the dynamic recrystallization degree of the new austenitic heat-resistant steel increases obviously with the increasing of deformation temperature. In the strain rate range of 0.01-1 s-1, the dynamic recrystallization degree decreases with the increasing of strain rate, while in the strain rate range of 1-10 s-1, the dynamic recrystallization degree increases with the increasing of strain rate. The peak stress constitutive model and the strain compensation constitutive model of the new austenitic heat-resistant steel are established, and the thermal deformation activation energy Q of the new austenitic heat-resistant steel is 624.253 kJ·mol-1, which is higher than that of traditional austenitic heat-resistant steel. The thermal deformation rheology stress of the new austenitic heat-resistant steel is predicted by the strain compensation constitutive model, the value of correlation coefficient r is 0.985, and the value of average absolute relative error AARE is 6.07%, indicating that the constitutive model can accurately describe the thermal deformation behavior of the heat-resistant steel.

基金项目:
国家自然科学基金资助项目(51774006,U1860105);安徽省重点研发计划资助项目(202304a05020026);安徽省自然科学基金资助项目(2008085QE279);安徽工业大学省级大学生科研训练计划资助项目(S202310360186)
作者简介:
作者简介:魏海莲(1988-),女,博士,讲师,E-mail:whl0403@126.com;通信作者:潘红波 (1978-),男,博士,教授,E-mail:20130007@ahut.edu.cn
参考文献:

[1]谢奇迈,马庆爽,张海莲,等.新型含铝奥氏体耐热钢中合金元素作用机制研究现状[J].中国冶金,2022,32(7):1-11,19.


Xie Q M, Ma Q S, Zhang H L, et al. Research status of elements alloying mechanism in alumina-forming austenitic heat-resistant steel[J]. China Metallurgy, 2022,32(7):1-11,19.  

[2]Heczko M, Esser B D, Smith T M, et al. Atomic resolution characterization of strengthening nanoparticles in a new high-temperature-capable 43Fe-25Ni-22.5Cr austenitic stainless steel[J]. Materials Science and Engineering: A, 2018,719:49-60.

[3]Gao J B, Xu Z L, Fang X D, et al. Enhancing creep resistance of aged Fe-Cr-Ni medium-entropy alloy via nano-sized Cu-rich and NbC precipitates investigated by nanoindentation[J]. Journal of Materials Research and Technology, 2022,20(4):1860-1872.

[4]王伟聪,杜华云,侯利锋,等.新型奥氏体耐热不锈钢C-HRA-5的热变形行为[J].钢铁研究学报,2022,34(5):496-503.

Wang W C, Du H Y, Hou L F, et al. Hot deformation behavior of C-HRA-5 new austenitic heat resistant stainless steel[J]. Journal of Iron and Steel Research,2022,34(5):496-503.

[5]周红伟, 高建兵, 沈加明, 等. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8):1013-1023.

Zhou H W,Gao J B, Shen J M, et al. Twin boundary evolution under low-cycle fatigue of C-HRA-5 austenitic heat-resistant steel at high temperature[J]. Acta Metallurgica Sinica, 2022, 58(8):1013-1023.

[6]方旭东, 包汉生, 李阳, 等. 超超临界锅炉用新型耐热无缝管C-HRA-5的开发[J]. 钢铁, 2020, 55(2):119-130.

Fang X D, Bao H S, Li Y, et al. Development of model heat resisting seamless tube C-HRA-5 for ultra-supercritical power plant boilerand[J]. Iron and Steel, 2020,55(2):119-130.

[7]毛欢,韩莹莹.基于应变补偿Arrhenius模型的TC20钛合金本构方程研究[J].铸造技术,2018,39(9):1939-1942,1947.

Mao H, Han Y Y. Study on constitutive equations of TC20 alloy based on strain-compensated Arrhenius model[J]. Foundry Technology,2018,39(9):1939-1942,1947.

[8]Song C N, Cao J G, Xiao J, et al. High-temperature constitutive relationship involving phase transformation for non-oriented electrical steel based on PSO-DNN approach[J]. Materials Today Communications,2023,34:105210.

[9]Shi C B, Xu H C, Wang S J, et al. Hot deformation characteristics and microstructure evolution of electroslag remelted 15Cr-22Ni-1Nb austenitic heat-resistant steel[J]. Materials Characterization, 2021,182:111564.

[10]Chen L, Xue H Y, Ma X C, et al. Processing map and hot deformation characteristics of 21Cr-11Ni-N-RE lean austenitic heat-resistant steel[J]. Steel Research International, 2015, 86(12):1583-1593.

[11]Jang M H, Kang J Y, Jang J H, et al. Hot deformation behavior and microstructural evolution of alumina-forming austenitic heat-resistant steels during hot compression[J]. Materials Characterization,2017,123:207-217.

[12]刘艳芬, 卫英慧, 侯利锋, 等. HR3C奥氏体耐热钢的高温变形行为[J].材料热处理学报, 2015, 36(9):131-136.

Liu Y F, Wei Y H, Hou L F, et al. Hot deformation behavior of HR3C austenitic heat resistant steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(9):131-136.

[13]王敬忠, 刘阿娇, 庞玉华, 等. 0.3%V改型07Cr25Ni21NbN奥氏体耐热钢热变形行为[J]. 钢铁研究学报, 2018, 30(5):379-385.

Wang J Z, Liu A J, Pang Y H, et al. Hot deformation behavior of 07Cr25Ni21NbN austenitic heat resistant steel modified using 0.3% vanadium[J]. Journal of Iron and Steel Research,2018, 30(5):379-385.

[14]Zhou Y H, Liu Y C, Zhou X S, et al. Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel[J]. Journal of Materials Research, 2015, 30(13):2090-2100.

[15]Luo Y W, Shi C B, Xu H C. Microstructure evolution and hot deformation characteristics of 15Cr-22Ni iron-base superalloy[J]. Journal of Alloys and Compounds, 2023,985:168628.

[16]王稳, 罗锐, 苗现华, 等. 超超临界火电用奥氏体耐热钢的热变形行为[J].塑性工程学报,2018, 25(6):154-160.

Wang W, Luo R, Miao X H, et al. Hot deformation behavior of austenitic heat resistant steel for ultra-supercritical thermal power[J]. Journal of Plasticity Engineering, 2018, 25(6):154-160.

[17]Nkhoma R K C, Siyasiya C W, Stumpf W E. Hot workability of AISI 321 and AISI 304 austenitic stainless steels[J]. Journal of Alloys and Compounds, 2014,595:103-112.

[18]Jafari M, Najafizadeh A. Correlation between Zener-Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel[J]. Materials Science and Engineering: A, 2009,501(1-2):16-25.

[19]郝庆乐,韩静涛.26MnB5钢的动态再结晶行为[J].钢铁研究学报, 2016, 28(1):58-63.

Hao Q L, Han J T. Dynamic recrystallization behavior of 26MnB5 steel[J]. Journal of Iron and Steel Research,2016, 28(1):58-63.

[20]方旭东, 李阳, 夏焱, 等. 新型耐热合金TG700C热变形及动态再结晶行为[J].材料热处理学报,2016,37(9):92-99.

Fang X D, Li Y, Xia Y, et al. Hot deformation and dynamic recrystallization behavior of new heat resistant alloy TG700C[J]. Transactions of Materials and Heat Treatment, 2016,37(9):92-99.

[21]Jia D, Sun W R, Xu D S, et al. Abnormal dynamic recrystallization behavior of a nickel based superalloy during hot deformation[J]. Journal of Alloys and Compounds, 2019,787:196-205.

[22]Cao Y, Di H S, Zhang J Q, et al. An electron backscattered diffraction study on the dynamic recrystallization behavior of a nickel-chromium alloy (800H) during hot deformation[J]. Materials Science and Engineering: A, 2013,585:71-85.

[23]Hao Y S, Li J, Liu W C, et al. On microstructure characterization of Fe-Cr-Ni-Mo-N super-austenitic stainless steel during hot deformation[J]. Journal of Iron and Steel Research International, 2019,26(4): 1080-1087.

[24]Mandal S, Jayalakshmi M, Bhaduri A K, et al. Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N)[J]. Metallurgical and Materials Transactions A, 2014, 45(12):5645-5656.

[25]Ponge D, Gottstein G. Necklace formation during dynamic recrystallization mechanisms and impact on flow behavior[J]. Acta Materialia, 1998, 46(1):69-80.

[26]曹建国,王天聪,李洪波,等.基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J].机械工程学报,2016,52(4): 90-96,102.

Cao J G, Wang T C, Li H B, et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified Arrhenius model[J]. Journal of Mechanical Engineering,2016,52(4): 90-96,102.

[27]Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J]. Acta Materialia, 1996,44(1):137-148.

[28]高志玉,盛凯,康宇,等.一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J].材料导报, 2019, 33(2):694-698.

Gao Z Y, Sheng K, Kang Y, et al. Hot deformation constitutive analysis of a novel Ni-Cr-Mo-B steel with high hardenability[J]. Materials Reports, 2019,33(2):694-698.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9