[1]谢奇迈,马庆爽,张海莲,等.新型含铝奥氏体耐热钢中合金元素作用机制研究现状[J].中国冶金,2022,32(7):1-11,19.
Xie Q M, Ma Q S, Zhang H L, et al. Research status of elements alloying mechanism in alumina-forming austenitic heat-resistant steel[J]. China Metallurgy, 2022,32(7):1-11,19.
[2]Heczko M, Esser B D, Smith T M, et al. Atomic resolution characterization of strengthening nanoparticles in a new high-temperature-capable 43Fe-25Ni-22.5Cr austenitic stainless steel[J]. Materials Science and Engineering: A, 2018,719:49-60.
[3]Gao J B, Xu Z L, Fang X D, et al. Enhancing creep resistance of aged Fe-Cr-Ni medium-entropy alloy via nano-sized Cu-rich and NbC precipitates investigated by nanoindentation[J]. Journal of Materials Research and Technology, 2022,20(4):1860-1872.
[4]王伟聪,杜华云,侯利锋,等.新型奥氏体耐热不锈钢C-HRA-5的热变形行为[J].钢铁研究学报,2022,34(5):496-503.
Wang W C, Du H Y, Hou L F, et al. Hot deformation behavior of C-HRA-5 new austenitic heat resistant stainless steel[J]. Journal of Iron and Steel Research,2022,34(5):496-503.
[5]周红伟, 高建兵, 沈加明, 等. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8):1013-1023.
Zhou H W,Gao J B, Shen J M, et al. Twin boundary evolution under low-cycle fatigue of C-HRA-5 austenitic heat-resistant steel at high temperature[J]. Acta Metallurgica Sinica, 2022, 58(8):1013-1023.
[6]方旭东, 包汉生, 李阳, 等. 超超临界锅炉用新型耐热无缝管C-HRA-5的开发[J]. 钢铁, 2020, 55(2):119-130.
Fang X D, Bao H S, Li Y, et al. Development of model heat resisting seamless tube C-HRA-5 for ultra-supercritical power plant boilerand[J]. Iron and Steel, 2020,55(2):119-130.
[7]毛欢,韩莹莹.基于应变补偿Arrhenius模型的TC20钛合金本构方程研究[J].铸造技术,2018,39(9):1939-1942,1947.
Mao H, Han Y Y. Study on constitutive equations of TC20 alloy based on strain-compensated Arrhenius model[J]. Foundry Technology,2018,39(9):1939-1942,1947.
[8]Song C N, Cao J G, Xiao J, et al. High-temperature constitutive relationship involving phase transformation for non-oriented electrical steel based on PSO-DNN approach[J]. Materials Today Communications,2023,34:105210.
[9]Shi C B, Xu H C, Wang S J, et al. Hot deformation characteristics and microstructure evolution of electroslag remelted 15Cr-22Ni-1Nb austenitic heat-resistant steel[J]. Materials Characterization, 2021,182:111564.
[10]Chen L, Xue H Y, Ma X C, et al. Processing map and hot deformation characteristics of 21Cr-11Ni-N-RE lean austenitic heat-resistant steel[J]. Steel Research International, 2015, 86(12):1583-1593.
[11]Jang M H, Kang J Y, Jang J H, et al. Hot deformation behavior and microstructural evolution of alumina-forming austenitic heat-resistant steels during hot compression[J]. Materials Characterization,2017,123:207-217.
[12]刘艳芬, 卫英慧, 侯利锋, 等. HR3C奥氏体耐热钢的高温变形行为[J].材料热处理学报, 2015, 36(9):131-136.
Liu Y F, Wei Y H, Hou L F, et al. Hot deformation behavior of HR3C austenitic heat resistant steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(9):131-136.
[13]王敬忠, 刘阿娇, 庞玉华, 等. 0.3%V改型07Cr25Ni21NbN奥氏体耐热钢热变形行为[J]. 钢铁研究学报, 2018, 30(5):379-385.
Wang J Z, Liu A J, Pang Y H, et al. Hot deformation behavior of 07Cr25Ni21NbN austenitic heat resistant steel modified using 0.3% vanadium[J]. Journal of Iron and Steel Research,2018, 30(5):379-385.
[14]Zhou Y H, Liu Y C, Zhou X S, et al. Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel[J]. Journal of Materials Research, 2015, 30(13):2090-2100.
[15]Luo Y W, Shi C B, Xu H C. Microstructure evolution and hot deformation characteristics of 15Cr-22Ni iron-base superalloy[J]. Journal of Alloys and Compounds, 2023,985:168628.
[16]王稳, 罗锐, 苗现华, 等. 超超临界火电用奥氏体耐热钢的热变形行为[J].塑性工程学报,2018, 25(6):154-160.
Wang W, Luo R, Miao X H, et al. Hot deformation behavior of austenitic heat resistant steel for ultra-supercritical thermal power[J]. Journal of Plasticity Engineering, 2018, 25(6):154-160.
[17]Nkhoma R K C, Siyasiya C W, Stumpf W E. Hot workability of AISI 321 and AISI 304 austenitic stainless steels[J]. Journal of Alloys and Compounds, 2014,595:103-112.
[18]Jafari M, Najafizadeh A. Correlation between Zener-Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel[J]. Materials Science and Engineering: A, 2009,501(1-2):16-25.
[19]郝庆乐,韩静涛.26MnB5钢的动态再结晶行为[J].钢铁研究学报, 2016, 28(1):58-63.
Hao Q L, Han J T. Dynamic recrystallization behavior of 26MnB5 steel[J]. Journal of Iron and Steel Research,2016, 28(1):58-63.
[20]方旭东, 李阳, 夏焱, 等. 新型耐热合金TG700C热变形及动态再结晶行为[J].材料热处理学报,2016,37(9):92-99.
Fang X D, Li Y, Xia Y, et al. Hot deformation and dynamic recrystallization behavior of new heat resistant alloy TG700C[J]. Transactions of Materials and Heat Treatment, 2016,37(9):92-99.
[21]Jia D, Sun W R, Xu D S, et al. Abnormal dynamic recrystallization behavior of a nickel based superalloy during hot deformation[J]. Journal of Alloys and Compounds, 2019,787:196-205.
[22]Cao Y, Di H S, Zhang J Q, et al. An electron backscattered diffraction study on the dynamic recrystallization behavior of a nickel-chromium alloy (800H) during hot deformation[J]. Materials Science and Engineering: A, 2013,585:71-85.
[23]Hao Y S, Li J, Liu W C, et al. On microstructure characterization of Fe-Cr-Ni-Mo-N super-austenitic stainless steel during hot deformation[J]. Journal of Iron and Steel Research International, 2019,26(4): 1080-1087.
[24]Mandal S, Jayalakshmi M, Bhaduri A K, et al. Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N)[J]. Metallurgical and Materials Transactions A, 2014, 45(12):5645-5656.
[25]Ponge D, Gottstein G. Necklace formation during dynamic recrystallization mechanisms and impact on flow behavior[J]. Acta Materialia, 1998, 46(1):69-80.
[26]曹建国,王天聪,李洪波,等.基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J].机械工程学报,2016,52(4): 90-96,102.
Cao J G, Wang T C, Li H B, et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified Arrhenius model[J]. Journal of Mechanical Engineering,2016,52(4): 90-96,102.
[27]Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J]. Acta Materialia, 1996,44(1):137-148.
[28]高志玉,盛凯,康宇,等.一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J].材料导报, 2019, 33(2):694-698.
Gao Z Y, Sheng K, Kang Y, et al. Hot deformation constitutive analysis of a novel Ni-Cr-Mo-B steel with high hardenability[J]. Materials Reports, 2019,33(2):694-698.
|