网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Al-8.79Zn-2.16Mg-2.11Cu-0.12Zr合金的本构关系和微观组织演变
英文标题:Constitutive relationship and microstructure evolution of Al-8.79Zn-2.16Mg-2.11Cu-0.12Zr alloy
作者:庄大勇 任大为 李洋 潘宏伟 冯翔 周莉莉 
单位:中船重工龙江广瀚燃气轮机有限公司 
关键词:Al-Zn-Mg-Cu合金 热压缩 本构关系 微观组织 再结晶 
分类号:TG301
出版年,卷(期):页码:2024,49(6):239-248
摘要:

为解决高强度铝合金在工业化大生产过程中出现的挤压、冲压和锻造不合格现象,以Al-8.79AZn-2.16Mg-2.11Cu-0.12Zr合金为研究对象,利用热模拟实验机开展了合金的等温压缩变形测试,完成了合金高温热力学行为特征分析和微观组织演变分析,构建了Al-8.79Zn-2.16Mg-2.11Cu-0.12Zr合金的考虑应变补偿和未考虑应变补偿的两种本构关系,并进行了流变应力预测。研究结果表明:流变应力对应变速率和温度非常敏感,在低应变速率条件下,发生连续动态再结晶现象;考虑应变补偿的本构关系具有更高的预测精度;390 ℃/5 s-1变形条件下的再结晶分数最大,约为17%,再结晶临界应力值最大,为65.28 MPa。

In order to solve the unqualified phenomenon of extrusion, stamping and forging of high-strength aluminum alloys in the process of industrial mass production, for Al-8.79Zn-2.16Mg-2.11Cu-0.12Zr alloy, its isothermal compression deformation test was carried out by thermal simulation machine, and the thermodynamic behavior characteristic and microstructure evolution of alloy at high temperature were analyzed. Then, two constitutive relationships of Al-8.79Zn-2.16Mg-2.11Cu-0.12Zr alloy with and without considering strain compensation were established, and the rheological stress prediction was conducted. The research results show that the rheological stress is very sensitive to strain rate and temperature, and continuous dynamic recrystallization occurs under low strain rate conditions. The constitutive relationship considering strain compensation has a higher prediction accuracy, the fraction of recrystallization under the deformation condition of 390 ℃/5 s-1 is the largest, which is about 17%, and the critical stress value of recrystallization is the largest, which is 65.28 MPa.

基金项目:
重点基础材料技术与产业化项目(2016YFB0300900)
作者简介:
作者简介:庄大勇(1985-),男,硕士,工程师,E-mail:zhuangdayongyong@163.com
参考文献:

[1]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials and Design, 2011, 32(4):1733-1759.


[2]Liang R Q, Khan A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures[J]. International Journal of Plasticity, 1999,15(9):963-980.

[3]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983,21:541-548.

[4]Khan A S, Huang S J. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5-104 s-1[J]. International Journal of Plasticity, 1992,8(4):397-424.

[5]Khan A S, Zhang H Y, Takacs L. Mechanical response and modeling of fully compacted nanocrystalline iron and copper[J]. International Journal of Plasticity, 2000,16(12):1459-1476.

[6]Khan A S,Suh Y S, Chen X, et al. Nanocrystalline aluminum and iron: Mechanical behavior at quasi-static and high strain rates, and constitutive modeling[J]. International Journal of Plasticity, 2006, 22(2):195-209.

[7]Farrokh B, Khan A S. Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: Synthesis, experiment, and constitutive modeling[J]. International Journal of Plasticity, 2009, 25(5):715-732.

[8]Fields D S, Backofen W A. Determination of strain hardening characteristics by torsion testing[J]. Proceeding of American Society for Testing and Materials, 1957, 57:1259-1272.

[9]Molinari A, Ravichandran G. Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length[J]. Mechanics of Materials, 2005, 37(7):737-752.

[10]Voce E. The relationship between stress and strain for homogeneous deformation[J]. Journal of the Institute of Metals, 1948,74:537-562.

[11]Kocks U F. Laws for work-hardening and low-temperature creep[J]. Journal of Engineering Materials and Technology,1976,98(1):76-85.

[12]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1994, 15(1): 22-32.

[13]Shi H, McLaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminium alloys[J]. Material Science and Technology,1997,13(3):210-216.

[14]Lin Y C, Liu G. A new mathematical model for predicting flow stress of typical high-strength alloy steel at elevated high temperature[J]. Computational Materials Science,2000, 48(1): 54-58.

[15]杨东, 姜紫薇, 邓志军. 高温高应变率下钛合金Ti6Al4V动态力学行为及本构关系[J]. 高压物理学报, 2024,(1):74-84.

Yang D,Jiang Z W,Deng Z J. Dynamic behavior and constitutive relationship of titanium alloy Ti6Al4V under high temperature and high strain rate[J]. Chinese Journal of High Pressure Physics, 2024,(1):74-84.

[16]Song C N, Cao J G, Xiao J, et al. High-temperature constitutive relationship involving phase transformation for non-oriented electrical steel based on PSO-DNN approach[J]. Materials Today:Communications, 2023, 34:105210.

[17]张东, 刘啸奔, 孔天威,等. 高钢级管道焊缝材料应力应变本构关系确定方法[J].中国机械工程, 2023, 17(34): 2106-2114.

Zhang D,Liu X B,Kong T W,et al. Determination method of stress-strain constitutive relationship of weld materials for high-grade steel pipelines[J]. China Mechanical Engineering, 2023, 17(34): 2106-2114.

[18]谭毅, 杨书仪, 孙要兵,等. ZL114A铝合金本构关系与失效准则参数的确定[J]. 爆炸与冲击, 2024,(1):86-105.

Tan Y, Yang S Y,Sun Y B,et al. Determination of constitutive relation and fracture criterion parameters for ZL114A aluminum alloy[J]. Explosion and Shock Waves, 2024,(1):86-105.

[19]白杰, 霍元明, 何涛,等. 基于GA-Arrhenius 本构模型的EA4T钢高温变形行为[J]. 锻压技术, 2022, 47(11):246-253.

Bai J,Huo Y M,He T,et al. High-temperature deformation behavior for EA4T steel based on GA-Arrhenius constitutive model[J]. Forging & Stamping Technology, 2022,47(11):246-253.

[20]Rokni M R, Hanzaki A Z, Widener C,et al. The strain-compensated constitutive equation for high temperature flow behavior of an Al-Zn-Mg-Cu alloy[J]. Journal of Materials Engineering and Performance, 2014, 23: 4002-4009.

[21]曹建国, 王天聪, 李洪波,等. 基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J]. 机械工程学报, 2016, 52(4):90-96,102.

Cao J G,Wang T C,Li H B,et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified Arrhenius model[J]. Journal of Mechanical Engineering, 2016, 52(4):90-96,102.

[22]Bhattacharyya J J, Agnew S R, Lee M M, et al. Measuring and modeling the anisotropic, high strain rate deformation of Al alloy, 7085, plate in T711 temper[J]. International Journal of Plasticity, 2017,93: 46-63.

[23]Ashtiani H R R, Shahsavari P. Strain-dependent constitutive equations to predict high temperature flow behavior of AA2030 aluminum alloy[J]. Mechanics of Materials, 2016,100:209-218.

[24]Liu J W, Zhao Z G, Lu S Q. Microstructure evolution and constitutive equation for the hot deformation of LZ91 Mg alloy[J]. Catalysis Today, 2018,318(15):119-125.

[25]Gao H X, Li N, Ho H L, et al. Determination of a set of constitutive equations for an Al-Li alloy at SPF conditions[J]. Materials Today:Proceedings, 2015,2(S2): 408-413.

[26]Ashtiani H R R, Shayanpoor A A. New constitutive equation utilizing grain size for modeling of hot deformation behavior of AA1070 aluminum[J]. Transactions of Nonferrous Metals Society of China, 2021,31(2):345-357.

[27]He J L, Zhang D T, Zhang W W, et al. Constitutive equation and hot compression deformation behavior of homogenized Al-7.5Zn-1.5Mg-0.2Cu-0.2Zr alloy [J]. Materials, 2017,10(10): 1-12.

[28]Feng D, Zhang X M, Liu S D,et al. Constitutive equation and hot deformation behavior of homogenized Al-7.68Zn-2.12Mg-1.98Cu-0.12Zr alloy during Compression at elevated temperature[J]. Materials Science and Engineering: A, 2014,608: 63-72.

[29]Zhang F, Sun J L, Shen J,et al. Flow behavior and processing maps of 2099 alloy[J]. Materials Science and Engineering:A, 2014,613:141-147.

[30]Huang H F, Jiang F, Zhou J, et al. Hot deformation behavior and microstructural evolution of as homogenized Al-6Mg-0.4Mn-0.25Sc-0.1Zr alloy during compression at elevated temperature[J]. Journal of Alloys and Compounds, 2015,644(25):862-872.

[31]Quan G Z, Li G S, Chen T, et al. Dynamic recrystallization kinetics of 42CrMo steel during compression at different temperatures and strain rates[J]. Materials Science and Engineering: A, 2011,528(13-14):4643-4651.

[32]Dong Y Y, Zhang C S, Zhao G Q, et al. Constitutive equation and processing maps of an Al-Mg-Si aluminum alloy: Determination and application in simulating extrusion process of complex profiles[J]. Materials & Design, 2016,92:983-997.

[33]Chen L, Zhao G Q, Yu J Q, et al. Constitutive analysis of homogenized 7005 aluminum alloy at evaluated temperature for extrusion process[J]. Materials & Design, 2015,66(5):129-136.

[34]Xu G F, Peng X Y, Liang X P, et al. Constitutive relationship for high temperature deformation of Al-3Cu-0.5Sc alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6):1549-1555.

[35]Hu D C, Wang L, Wang H J, et al. Dynamic recrystallization behavior and processing map of the 6082 aluminum alloy[J]. Materials, 2020,13(5):1042.

[36]Deng Y, Yin Z M, Huang J W. Hot deformation behavior and microstructural evolution of homogenized 7050 aluminum alloy during compression at elevated temperature[J]. Materials Science and Engineering:A, 2011, 528(3):1780-1786.

[37]Zhou M, Lin Y C, Deng J, et al. Hot tensile deformation behaviors and constitutive model of an Al-Zn-Mg-Cu alloy[J]. Materials & Design, 2014, 59:141-150.

[38]Tang J, Jiang F L, Luo C H, et al. Integrated physically based modeling for the multiple static softening mechanisms following multi-stage hot deformation in Al-Zn-Mg-Cu alloys[J]. International Journal of Plasticity, 2020, 134:102809.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9