[1]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials and Design, 2011, 32(4):1733-1759.
[2]Liang R Q, Khan A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures[J]. International Journal of Plasticity, 1999,15(9):963-980.
[3]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983,21:541-548.
[4]Khan A S, Huang S J. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5-104 s-1[J]. International Journal of Plasticity, 1992,8(4):397-424.
[5]Khan A S, Zhang H Y, Takacs L. Mechanical response and modeling of fully compacted nanocrystalline iron and copper[J]. International Journal of Plasticity, 2000,16(12):1459-1476.
[6]Khan A S,Suh Y S, Chen X, et al. Nanocrystalline aluminum and iron: Mechanical behavior at quasi-static and high strain rates, and constitutive modeling[J]. International Journal of Plasticity, 2006, 22(2):195-209.
[7]Farrokh B, Khan A S. Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: Synthesis, experiment, and constitutive modeling[J]. International Journal of Plasticity, 2009, 25(5):715-732.
[8]Fields D S, Backofen W A. Determination of strain hardening characteristics by torsion testing[J]. Proceeding of American Society for Testing and Materials, 1957, 57:1259-1272.
[9]Molinari A, Ravichandran G. Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length[J]. Mechanics of Materials, 2005, 37(7):737-752.
[10]Voce E. The relationship between stress and strain for homogeneous deformation[J]. Journal of the Institute of Metals, 1948,74:537-562.
[11]Kocks U F. Laws for work-hardening and low-temperature creep[J]. Journal of Engineering Materials and Technology,1976,98(1):76-85.
[12]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1994, 15(1): 22-32.
[13]Shi H, McLaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminium alloys[J]. Material Science and Technology,1997,13(3):210-216.
[14]Lin Y C, Liu G. A new mathematical model for predicting flow stress of typical high-strength alloy steel at elevated high temperature[J]. Computational Materials Science,2000, 48(1): 54-58.
[15]杨东, 姜紫薇, 邓志军. 高温高应变率下钛合金Ti6Al4V动态力学行为及本构关系[J]. 高压物理学报, 2024,(1):74-84.
Yang D,Jiang Z W,Deng Z J. Dynamic behavior and constitutive relationship of titanium alloy Ti6Al4V under high temperature and high strain rate[J]. Chinese Journal of High Pressure Physics, 2024,(1):74-84.
[16]Song C N, Cao J G, Xiao J, et al. High-temperature constitutive relationship involving phase transformation for non-oriented electrical steel based on PSO-DNN approach[J]. Materials Today:Communications, 2023, 34:105210.
[17]张东, 刘啸奔, 孔天威,等. 高钢级管道焊缝材料应力应变本构关系确定方法[J].中国机械工程, 2023, 17(34): 2106-2114.
Zhang D,Liu X B,Kong T W,et al. Determination method of stress-strain constitutive relationship of weld materials for high-grade steel pipelines[J]. China Mechanical Engineering, 2023, 17(34): 2106-2114.
[18]谭毅, 杨书仪, 孙要兵,等. ZL114A铝合金本构关系与失效准则参数的确定[J]. 爆炸与冲击, 2024,(1):86-105.
Tan Y, Yang S Y,Sun Y B,et al. Determination of constitutive relation and fracture criterion parameters for ZL114A aluminum alloy[J]. Explosion and Shock Waves, 2024,(1):86-105.
[19]白杰, 霍元明, 何涛,等. 基于GA-Arrhenius 本构模型的EA4T钢高温变形行为[J]. 锻压技术, 2022, 47(11):246-253.
Bai J,Huo Y M,He T,et al. High-temperature deformation behavior for EA4T steel based on GA-Arrhenius constitutive model[J]. Forging & Stamping Technology, 2022,47(11):246-253.
[20]Rokni M R, Hanzaki A Z, Widener C,et al. The strain-compensated constitutive equation for high temperature flow behavior of an Al-Zn-Mg-Cu alloy[J]. Journal of Materials Engineering and Performance, 2014, 23: 4002-4009.
[21]曹建国, 王天聪, 李洪波,等. 基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J]. 机械工程学报, 2016, 52(4):90-96,102.
Cao J G,Wang T C,Li H B,et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified Arrhenius model[J]. Journal of Mechanical Engineering, 2016, 52(4):90-96,102.
[22]Bhattacharyya J J, Agnew S R, Lee M M, et al. Measuring and modeling the anisotropic, high strain rate deformation of Al alloy, 7085, plate in T711 temper[J]. International Journal of Plasticity, 2017,93: 46-63.
[23]Ashtiani H R R, Shahsavari P. Strain-dependent constitutive equations to predict high temperature flow behavior of AA2030 aluminum alloy[J]. Mechanics of Materials, 2016,100:209-218.
[24]Liu J W, Zhao Z G, Lu S Q. Microstructure evolution and constitutive equation for the hot deformation of LZ91 Mg alloy[J]. Catalysis Today, 2018,318(15):119-125.
[25]Gao H X, Li N, Ho H L, et al. Determination of a set of constitutive equations for an Al-Li alloy at SPF conditions[J]. Materials Today:Proceedings, 2015,2(S2): 408-413.
[26]Ashtiani H R R, Shayanpoor A A. New constitutive equation utilizing grain size for modeling of hot deformation behavior of AA1070 aluminum[J]. Transactions of Nonferrous Metals Society of China, 2021,31(2):345-357.
[27]He J L, Zhang D T, Zhang W W, et al. Constitutive equation and hot compression deformation behavior of homogenized Al-7.5Zn-1.5Mg-0.2Cu-0.2Zr alloy [J]. Materials, 2017,10(10): 1-12.
[28]Feng D, Zhang X M, Liu S D,et al. Constitutive equation and hot deformation behavior of homogenized Al-7.68Zn-2.12Mg-1.98Cu-0.12Zr alloy during Compression at elevated temperature[J]. Materials Science and Engineering: A, 2014,608: 63-72.
[29]Zhang F, Sun J L, Shen J,et al. Flow behavior and processing maps of 2099 alloy[J]. Materials Science and Engineering:A, 2014,613:141-147.
[30]Huang H F, Jiang F, Zhou J, et al. Hot deformation behavior and microstructural evolution of as homogenized Al-6Mg-0.4Mn-0.25Sc-0.1Zr alloy during compression at elevated temperature[J]. Journal of Alloys and Compounds, 2015,644(25):862-872.
[31]Quan G Z, Li G S, Chen T, et al. Dynamic recrystallization kinetics of 42CrMo steel during compression at different temperatures and strain rates[J]. Materials Science and Engineering: A, 2011,528(13-14):4643-4651.
[32]Dong Y Y, Zhang C S, Zhao G Q, et al. Constitutive equation and processing maps of an Al-Mg-Si aluminum alloy: Determination and application in simulating extrusion process of complex profiles[J]. Materials & Design, 2016,92:983-997.
[33]Chen L, Zhao G Q, Yu J Q, et al. Constitutive analysis of homogenized 7005 aluminum alloy at evaluated temperature for extrusion process[J]. Materials & Design, 2015,66(5):129-136.
[34]Xu G F, Peng X Y, Liang X P, et al. Constitutive relationship for high temperature deformation of Al-3Cu-0.5Sc alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6):1549-1555.
[35]Hu D C, Wang L, Wang H J, et al. Dynamic recrystallization behavior and processing map of the 6082 aluminum alloy[J]. Materials, 2020,13(5):1042.
[36]Deng Y, Yin Z M, Huang J W. Hot deformation behavior and microstructural evolution of homogenized 7050 aluminum alloy during compression at elevated temperature[J]. Materials Science and Engineering:A, 2011, 528(3):1780-1786.
[37]Zhou M, Lin Y C, Deng J, et al. Hot tensile deformation behaviors and constitutive model of an Al-Zn-Mg-Cu alloy[J]. Materials & Design, 2014, 59:141-150.
[38]Tang J, Jiang F L, Luo C H, et al. Integrated physically based modeling for the multiple static softening mechanisms following multi-stage hot deformation in Al-Zn-Mg-Cu alloys[J]. International Journal of Plasticity, 2020, 134:102809.
|