网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
变形量对Ti-55531钛合金微观组织和力学性能的影响
英文标题:Influence of deformation amount on microstructure and mechanical properties for Ti-55531 titanium alloy
作者:曾菁1 李昌民1 高蕾1 张鑫1 莫安军1 栗文强1 王晓巍2 王德勇2 
单位:1.中国第二重型机械集团德阳万航模锻有限责任公司  2.沈阳飞机工业(集团)有限公司 
关键词:Ti-55531钛合金 变形量 微观组织 力学性能 热处理 
分类号:TG316.2
出版年,卷(期):页码:2024,49(6):249-254
摘要:

为了进一步优化Ti-55531钛合金的锻造过程,分析了变形量对其微观组织和力学性能的影响。通过不同变形量下的镦粗实验,分析了Ti-55531钛合金锻后的微观组织,并对锻后样品进行了β退火+时效热处理,最后进行了拉伸测试。结果表明,随着变形量的增加,Ti-55531钛合金中初生α相的体积分数逐渐下降,热处理后初生α相消失,微观组织以次生α相为主。Ti-55531钛合金的平均强度随着变形量的增加逐渐下降,而其塑性随着变形量的增加逐渐增加,结合企业生产标准,同时为了避免各向异性,应将变形量范围控制在30%~50%。

In order to further optimize the forging process of Ti-55531 titanium alloy, the influences of deformation amount on microstructure and mechanical properties were analyzed, and the microstructure of Ti-55531 titanium alloy after forging was analyzed by upsetting experiments under different deformation amounts. Then, β annealing and aging heat treatment were carried out on the samples after forging, and the tensile experiment was carried out. The results show that with the increasing of deformation amount, the volume fraction of primary α phase for Ti-55531 titanium alloy decreases gradually. After heat treatment, primary α phase disappears, and the microstructure is dominated by secondary α phase. The average strength of Ti-55531 titanium alloy gradually decreases with the increasing of deformation amount, and the plasticity gradually increases with the increasing of deformation amount. In order to avoid anisotropy, the deformation amout range should be controlled at 30%-50% combined with the enterprise production standard.

基金项目:
作者简介:
作者简介:曾菁(1975-),女,本科,高级工程师,E-mail:zengjing0707@163.com;通信作者:李昌民(1994-),男,博士,工程师,E-mail:lcm940214@126.com
参考文献:

[1]Huang F Y, Huang C W, Zeng H T, et al. Deformation and fracture mechanisms of Ti-55531 alloy with a bimodal microstructure under the pre-tension plus torsion composite loading[J]. Journal of Materials Research and Technology, 2023, 26: 7425-7443.


[2]Wen Y, Liu P, Guo H J, et al. Effect of electroshocking treatment on the microstructure and mechanical properties of laser melting deposited near-β Ti-55531 thin-wall[J]. Journal of Alloys and Compounds, 2023, 936: 168187.

[3]Li C M, Huang L, Zhao M J, et al. Hot deformation behavior and mechanism of a new metastable β titanium alloy Ti-6Cr-5Mo-5V-4Al in single phase region[J]. Materials Science and Engineering: A, 2021, 814: 141231.

[4]Xiao Y W, Lin Y C, Jiang Y Q, et al. A dislocation density-based model and processing maps of Ti-55511 alloy with bimodal microstructures during hot compression in α+β region[J]. Materials Science and Engineering: A, 2020, 790:139692. 

[5]Lin Y C, Xiao Y W, Jiang Y Q, et al. Spheroidization and dynamic recrystallization mechanisms of Ti-55511 alloy with bimodal microstructures during hot compression in α+β region[J]. Materials Science and Engineering: A, 2020, 782: 139282.

[6]Wu C, Huang L, Li C M. Experimental investigation on dynamic phase transformation and texture evolution of Ti55531 high strength titanium alloy during hot compression in the α+β region[J]. Materials Science and Engineering: A, 2020, 773: 138851.

[7]Fan X G, Zhang Y, Gao P F, et al. Deformation behavior and microstructure evolution during hot working of a coarse-grained Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy in beta phase field[J]. Materials Science and Engineering: A, 2017, 694: 24-32.

[8]Wu C, Huang L. Hot deformation and dynamic recrystallization of a near-beta titanium alloy in the β single phase region[J]. Vacuum, 2018, 156: 384-401.

[9]Xiang Y, Xiang W, Yuan W H. Flow softening and microstructural evolution of near β titanium alloy Ti-55531 during hot compression deformation in the α+β region[J]. Journal of Alloys and Compounds, 2023, 955: 170165.

[10]Wu D, Liu L B, Zhang L G, et al. Tensile deformation mechanism and micro-void nucleation of Ti-55531 alloy with bimodal microstructure[J]. Journal of Materials Research and Technology, 2020, 9(6): 15442-15453.

[11]Wu C, Zhan M. Microstructural evolution, mechanical properties and fracture toughness of near β titanium alloy during different solution plus aging heat treatments[J]. Journal of Alloys and Compounds, 2019, 805: 1144-1160.

[12]Huang C W, Zhao Y Q, Xin S W, et al. Effect of microstructure on tensile properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy[J]. Journal of Alloys and Compounds, 2017, 693: 582-591.

[13]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].

[14]Lin Y C, Huang J, He D G, et al. Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression[J]. Journal of Alloys and Compounds, 2019, 795: 471-482.

[15]Lin Y C, Huang J, Li H B, et al. Phase transformation and constitutive models of a hot compressed TC18 titanium alloy in the α+β regime[J]. Vacuum, 2018, 157: 83-91.

[16]Li C M, Huang L, Zhao M J, et al. Systematic analysis of the softening mechanism and texture evolution of Ti-6Cr-5Mo-5V-4Al alloy during hot compression in α+β phase region[J]. Materials Science and Engineering: A, 2022, 850: 143571.

[17]Yin M, Luo H J, Deng H, et al. Thermomechanical processing of near-β Ti-5Al-5Mo-5V-1Cr-1Fe alloys: Effect of deformation reduction on microstructures and mechanical properties[J]. Materials Science and Engineering: A, 2022, 853: 143786.

[18]Li L, Luo J, Yan J J, et al. Dynamic globularization and restoration mechanism of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy during isothermal compression[J]. Journal of Alloys and Compounds, 2015, 622: 174-183.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9