网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
C18150铜合金与H13模具钢稳态接触换热系数实验研究理论与实验研究
英文标题:Experimental investigation on steady state contact heat transfer coefficient between C18150 copper alloy and H13 mold steel
作者:赵巨涛1 张立文1 张驰1 丁浩晨1 马毅1 运新兵2 
单位:1.大连理工大学  2.大连交通大学 
关键词:C18150铜合金 H13模具钢 稳态接触换热系数 界面平均温度 接触载荷 
分类号:TK124;TG379
出版年,卷(期):页码:2024,49(6):255-259
摘要:

使用一套稳态接触换热系数实验设备,测量了C18150铜合金与H13模具钢的稳态接触换热系数。控制热流方向由H13模具钢流向C18150铜合金,界面平均温度为200~600 ℃,接触载荷分别为1.56、6.24、10.92和15.6 MPa。研究分析了界面平均温度、接触载荷、接触历史过程对稳态接触换热系数的影响规律。界面平均温度通过改变材料属性和接触表面状态进而影响稳态接触换热系数。实验结果表明,界面平均温度为345 ℃、接触载荷为15.6 MPa时,稳态接触换热系数最大。不同接触历史过程下,加载过程中测量的稳态接触换热系数小于卸载过程。实验研究可进一步提高C18150铜合金热成形过程数值模拟的精度,进而提高成形质量。

The steady state contact heat transfer coefficient between C18150 copper alloy and H13 mold steel was measured by a set of steady state contact heat transfer coefficient experimental equipment, and the direction of heat flow was controlled from H13 mold steel to C18150 copper alloy under the interface average temperature of 200-600 ℃ and the contact load of 1.56, 6.24, 10.92 and 15.6 MPa, respectively. Then, the influence laws of the interface average temperature, contact load and contact history process on the steady state contact heat transfer coefficient were studied and analyzed, and the steady state contact heat transfer coefficient was affected by the average interface temperature through changing the material properties and the contact surface state. The experimental results show that the steady state contact heat transfer coefficient is the largest when the interface average temperature is 345 ℃ and the contact load is 15.6 MPa. The steady state contact heat transfer coefficient in the loading process is smaller than that in the unloading process during different contact history processes. Thus, the experiment study can further improve the accuracy of the numerical simulation for C18150 copper alloy thermoforming process to further improve the forming quality.

基金项目:
国家自然科学基金资助项目(52274375)
作者简介:
作者简介:赵巨涛(1999-),男,硕士研究生,E-mail:17634947456@163.com;通信作者:张立文(1962-),男,博士,教授,E-mail:commat@mail.dlut.edu.cn
参考文献:

[1]Xing L, Zhang L W, Zhang X Z, et al. Experimental investigation of contact heat transfer at high temperature based on steady-state heat flux method[J]. Experimental Heat Transfer, 2010, 23(2): 107-116.


[2]齐艳阳,刘江林,王涛,等. 基于FEM分析轧制预变形对AZ31B镁合金热轧板材边部损伤的影响规律[J]. 稀有金属,2022,46(7): 873-881.

Qi Y Y, Liu J L, Wang T, et al. Edge damage of hot rolled AZ31B magnesium alloy sheets with pre-rolling based on FEM [J]. Chinese Journal of Rare Metals, 2022, 46(7): 873-881.

[3]张海成,昌春艳,周杰. TC18钛合金热锻成形换热系数实验研究[J]. 锻压技术,2023,48(4): 24-31.

Zhang H C, Chang C Y, Zhou J. Research on heat transfer coefficient in hot forging of TC18 titanium alloy[J]. Forging & Stamping Technology, 2023, 48(4): 24-31.

[4]Lu B S, Wang L G, Geng Z, et al. Heat transfer characteristics of billet/die interface and measures to relieve thermal stress for hot forging die[J]. International Journal of Thermophysics, 2017, 38(7): 1-20.

[5]Dou R F, Ge T R, Liu X L, et al. Effects of contact pressure, interface temperature, and surface roughness on thermal contact conductance between stainless steel surfaces under atmosphere condition[J]. International Journal of Heat and Mass Transfer, 2016, 94: 156-163.

[6]Yeh C L, Wen C Y, Chen F Y, et al. An experimental investigation of thermal contact conductance across bolted joints[J]. Experimental Thermal and Fluid Science, 2001, 25(6): 349-357.

[7]Xiao Y M, Sun H, Xu L, et al. Thermal contact conductance between solid interfaces under low temperature and vacuum[J]. The Review of Scientific Instruments, 2004, 75(9): 3074-3076.

[8]Ding C, Wang R S. Thermal contact conductance of stainless steel-GFRP interface under vacuum environment[J]. Experimental Thermal and Fluid Science, 2012, 42: 1-5.

[9]Zhu Z, Zhang L W, Wu Q K, et al. An experimental investigation of thermal contact conductance of Hastelloy C-276 based on steady-state heat flux method[J]. International Communications in Heat and Mass Transfer, 2013, 41: 63-67.

[10]Tang Q Y, He J J, Zhang W F. Influencing factors of thermal contact conductance between TC4/30CrMnSi interfaces[J]. International Journal of Heat and Mass Transfer, 2015, 86: 694-698.

[11]Sponagle B, Groulx D. Measurement of thermal interface conductance at variable clamping pressures using a steady state method[J]. Applied Thermal Engineering, 2016, 96: 671-681.

[12]孙静娜,刘楠楠,姚力,等. AZ31B镁合金轧制界面接触换热系数的实验研究[J]. 热加工工艺,2017,46(21): 101-105.

Sun J N, Liu N N, Yao L, et al. Experimental study on contact heat transfer coefficient of AZ31B magnesium alloy rolling interface[J]. Hot Working Technology, 2017, 46(21): 101-105.

[13]Volke P, Groche P. Interfacial heat transfer coefficients in cold forging of stainless steel [J]. International Journal of Material Forming, 2022, 15(3): 1-9.

[14]Tariq A, Asif M. Experimental investigation of thermal contact conductance for nominally flat metallic contact[J]. Heat and Mass Transfer, 2016, 52(2): 291-307.

[15]沈逸,曹家兴,黄永华. 采用叠片法的黄铜低温接触热阻测量[J]. 上海交通大学学报,2023,57(1): 76-83.

Shen Y, Cao J X, Huang Y H. Measurement of cryogenic thermal contact resistance of brass by lamination method[J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 76-83.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9