[1]Rezaei Ashtiani H R, Parsa M H, Bisadi H. Constitutive equations for elevated temperature flow behavior of commercial purity aluminum [J]. Materials Science and Engineering: A, 2012, 545: 61-67.
[2]Xiao J, Li D S, Li X Q, et al. Constitutive modeling and microstructure change of Ti-6Al-4V during the hot tensile deformation [J]. Journal of Alloys and Compounds, 2012, 541: 346-352.
[3]Chaboche J L. A review of some plasticity and viscoplasticity constitutive theories [J]. International Journal of Plasticity, 2008, 24(10): 1642-1693.
[4]Westergaard H M. Theory of Elasticity and Plasticity [M]. Harvard:Harvard University Press, 2013.
[5]赵辉, 彭艳, 石宝东. 金属材料各向异性本构模型研究进展 [J]. 塑性工程学报, 2022, 29(10): 32-42.
Zhao H, Peng Y, Shi B D. Research progress on anisotropic constitutive model of metal materials [J]. Journal of Plasticity Engineering, 2022, 29(10): 32-42.
[6]Zeng P. Neural computing in mechanics [J]. Applied Mechanics Reviews, 1998, 51(2): 173-197.
[7]Xia J, Won C, Kim H, et al. Artificial neural networks for predicting plastic anisotropy of sheet metals based on indentation test [J]. Materials, 2022, 15(5): 1714.
[8]Ali U, Muhammad W, Brahme A, et al. Application of artificial neural networks in micromechanics for polycrystalline metals [J]. International Journal of Plasticity, 2019, 120: 205-219.
[9]Mangal A, Holm E A. Applied machine learning to predict stress hotspots II: Hexagonal close packed materials [J]. International Journal of Plasticity, 2019, 114: 1-14.
[10]李非凡, 雷丽萍, 方刚. 镁合金塑性变形及延性断裂预测研究进展(上)——宏观本构模型的开发及应用 [J]. 塑性工程学报, 2020, 27(1): 1-13.
Li F F, Lei L P, Fang G. Research advances of plastic deformation and ductile fracture prediction of magnesium alloys. Part I: Development and applications of macroscopic constitutive models [J]. Journal of Plasticity Engineering, 2020, 27(1): 1-13.
[11]Li H, Hu X, Yang H, et al. Anisotropic and asymmetrical yielding and its distorted evolution: Modeling and applications [J]. International Journal of Plasticity, 2016, 82: 127-158.
[12]Li F F, Fang G. Modeling of 3D plastic anisotropy and asymmetry of extruded magnesium alloy and its applications in three-point bending [J]. International Journal of Plasticity, 2020, 130: 102704.
[13]Barlat F, Becker R C, Hayashida Y, et al. Yielding description for solution strengthened aluminum alloys [J]. International Journal of Plasticity, 1997, 13(4): 385-401.
[14]Cazacu O, Plunkett B, Barlat F. Orthotropic yield criterion for hexagonal closed packed metals [J]. International Journal of Plasticity, 2006, 22(7): 1171-1194.
[15]Soare S, Yoon J W, Cazacu O. On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming [J]. International Journal of Plasticity, 2008, 24(6): 915-944.
[16]Nixon M E, Lebensohn R A, Cazacu O, et al. Experimental and finite-element analysis of the anisotropic response of high-purity α-titanium in bending [J]. Acta Materialia, 2010, 58(17): 5759-5767.
[17]Cazacu O, Barlat F. A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals [J]. International Journal of Plasticity, 2004, 20(11): 2027-2045.
[18]Yoon J W, Lou Y, Yoon J, et al. Asymmetric yield function based on the stress invariants for pressure sensitive metals [J]. International Journal of Plasticity, 2014, 56: 184-202.
[19]Hu Q, Li X, Han X, et al. A normalized stress invariant-based yield criterion: Modeling and validation [J]. International Journal of Plasticity, 2017, 99: 248-273.
[20]Stoughton T B. A non-associated flow rule for sheet metal forming [J]. International Journal of Plasticity, 2002, 18(5): 687-714.
[21]Bland D R. The associated flow rule of plasticity [J]. Journal of the Mechanics and Physics of Solids, 1957, 6(1): 71-78.
[22]Hou Y, Myung D, Park J K, et al. A review of characterization and modelling approaches for sheet metal forming of lightweight metallic materials [J]. Materials, 2023, 16(2): 836.
[23]Bruschi S, Altan T, Banabic D, et al. Testing and modelling of material behaviour and formability in sheet metal forming [J]. CIRP Annals, 2014, 63(2): 727-749.
[24]Noman M, Clausmeyer T, Barthel C. A review of characterization and modelling approaches for sheet metal forming of lightweight metallic materials. Experimental characterization and modeling of the hardening behavior of the sheet steel LH800 [J]. Materials Science and Engineering: A, 2010, 527(10): 2515-2526.
[25]Stoughton T B, Yoon J W. Anisotropic hardening and non-associated flow in proportional loading of sheet metals [J]. International Journal of Plasticity, 2009, 25(9): 1777-1817.
[26]Revil-Baudard B, Cazacu O, Flater P, et al. Plastic deformation of high-purity α-titanium: Model development and validation using the Taylor cylinder impact test [J]. Mechanics of Materials, 2015, 80: 264-275.
[27]Plunkett B, Lebensohn R A, Cazacu O, et al. Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening [J]. Acta Materialia, 2006, 54(16): 4159-4169.
[28]Segurado J, Lebensohn R A, Llorca J, et al. Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements [J]. International Journal of Plasticity, 2012, 28(1): 124-140.
[29]Al-Hadi I, Kobaissy A, Ayoub G, et al. Modeling of the tension-compression asymmetry reduction of ECAPed Mg-3Al-1Zn through grain fragmentation [J]. Computational Materials Science, 2022, 210: 111439.
[30]Walde T, Riedel H. Modeling texture evolution during hot rolling of magnesium alloy AZ31 [J]. Materials Science and Engineering: A, 2007, 443(1): 277-284.
[31]Peirce D, Asaro R J, Needleman A. An analysis of nonuniform and localized deformation in ductile single crystals [J]. Acta Metallurgica, 1982, 30(6): 1087-1119.
[32]Kalidindi S R. Incorporation of deformation twinning in crystal plasticity models [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(2): 267-290.
[33]Tomé C N, Lebensohn R A, Kocks U F. A model for texture development dominated by deformation twinning: Application to zirconium alloys [J]. Acta Metallurgica et Materialia, 1991, 39(11): 2667-2680.
[34]Wang H, Wu P D, Wang J, et al. A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms [J]. International Journal of Plasticity, 2013, 49: 36-52.
[35]Weng G J. A micromechanical theory of grain-size dependence in metal plasticity [J]. Journal of the Mechanics and Physics of Solids, 1983, 31(3): 193-203.
[36]Lebensohn R A, Tomé C N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys [J]. Acta Metallurgica et Materialia, 1993, 41(9): 2611-2624.
[37]Sachs G. Plasticity problems in metals [J]. Transactions of the Faraday Society, 1928, 24: 84-92.
[38]Taylor G I. Plastic strain in metals [J]. J. Inst. Metals, 1938, 62: 307-324.
[39]Lebensohn R A, Tomé C N, Castaeda P P. Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations [J]. Philosophical Magazine, 2007, 87(28): 4287-4322.
[40]Zhang H, Diehl M, Roters F, et al. A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations [J]. International Journal of Plasticity, 2016, 80: 111-138.
[41]Roters F, Diehl M, Shanthraj P, et al. DAMASK-The Düsseldorf advanced material simulation kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale [J]. Computational Materials Science, 2019, 158: 420-478.
[42]Lou Y, Huh H, Yoon J W. Consideration of strength differential effect in sheet metals with symmetric yield functions [J]. International Journal of Mechanical Sciences, 2013, 66: 214-223.
[43]Hosford W F, Allen T J. Twinning and directional slip as a cause for a strength differential effect [J]. Metallurgical Transactions, 1973, 4(5): 1424-1425.
[44]Rodas E, Alejandro E. Microstructure-sensitive creep-fatigue interaction crystal-viscoplasticity model for single-crystal nickel-base superalloys [J/OL]. 2017 [2024-04-27]. http://hdl.handle. net/1853/59788.
[45]隋天校, 石多奇, 杨秦政, 等. 晶体塑性本构模型材料参数识别方法研究 [J]. 推进技术, 2023, 44(3): 210593.
Sui T X, Shi D Q, Yang Q Z, et al. Material parameter identification method of crystal plastic constitutive models [J]. Journal of Propulsion Technology, 2023, 44(3): 210593.
[46]Yang J, Meng C, Ling L. Prediction and simulation of wearable sensor devices for sports injury prevention based on BP neural network [J]. Measurement: Sensors, 2024, 33: 101104.
[47]Wang Z, Chen Q, Wang Z, et al. The investigation into the failure criteria of concrete based on the BP neural network [J]. Engineering Fracture Mechanics, 2022, 275: 108835.
[48]Li Y W, Cao K. Establishment and application of intelligent city building information model based on BP neural network model [J]. Computer Communications, 2020, 153: 382-389.
[49]Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks [A]. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings [C]. 2011.
[50]Lecun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition [J]. Neural Computation, 1989, 1(4): 541-551.
[51]Bacˇanin Dakula N. Convolutional neural network layers and architectures [A]. Sinteza 2019-International Scientific Conference on Information Technology and Data Related Research [C]. 2019.
[52]秦川, 高翔. 基于卷积神经网络的遥感图像目标识别仿真 [J]. 计算机仿真, 2024, 41(4): 274-278.
Qin C, Gao X. Simulation of remote sensing image target recognition based on convolutional neural network [J]. Computer Simulation, 2024, 41(4): 274-278.
[53]Taye M M. Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions [J]. Computation, 2023, 11(3): 52.
[54]Jordan M I. Serial order: A parallel distributed processing approach [J]. Advances in Psychology. North-Holland, 1997, 121: 471-495.
[55]Byeon W, Breuel T M, Raue F, et al. Scene labeling with LSTM recurrent neural networks [A]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [C]. Boston: IEEE, 2015.
[56]张丽莉, 唐明冬. 循环神经网络模型下道路碳排放浓度预测 [J]. 交通科技与经济, 2024, 26(2): 23-30.
Zhang L L, Tang M D. Prediction of road carbon emission concentration based on recurrent neural network model [J]. Technology & Economy in Areas of Communications, 2024, 26(2): 23-30.
[57]Greff K, Srivastava R K, Koutnik J, et al. LSTM: A search space odyssey [J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222-2232.
[58]Cho K, Van Merrinboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [A]. Conference on Empirical Methods in Natural Language Processing (EMNLP) [C]. 2014.
[59]Werbos P J. Backpropagation through time: What it does and how to do it [J]. Proceedings of the IEEE, 1990, 78(10): 1550-1560.
[60]Li F F, Zhu J, Zhang W, et al. Investigation on the inhomogeneous deformation of magnesium alloy during bending using an advanced plasticity model [J]. Journal of Materials Research and Technology, 2023, 25: 5064-5075.
[61]Palau T, Kuhn A, Nogales S, et al. A neural network based elasto-plasticity material model [A]. CD-ROM Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) [C]. TU Wien, 2012.
[62]Gorji M B, Mohr D. Towards neural network models for describing the large deformation behavior of sheet metal [J]. IOP Conference Series: Materials Science and Engineering, 2019, 651(1): 012102.
[63]Linka K, Hillgrtner M, Abdolazizi K P, et al. Constitutive artificial neural networks: A fast and general approach to predictive data-driven constitutive modeling by deep learning [J]. Journal of Computational Physics, 2021, 429: 110010.
[64]Frankel A, Hamel C M, Bolintineanu D, et al. Machine learning constitutive models of elastomeric foams [J]. Computer Methods in Applied Mechanics and Engineering, 2022, 391: 114492.
[65]Jang D P, Fazily P, Yoon J W. Machine learning-based constitutive model for J2-plasticity [J]. International Journal of Plasticity, 2021, 138: 102919.
[66]Fazily P, Yoon J W. Machine learning-driven stress integration method for anisotropic plasticity in sheet metal forming [J]. International Journal of Plasticity, 2023, 166: 103642.
[67]Souto N. Computational Design of a Technological Mechanical Test for Material Characterization by Inverse Analysis [D]. Varna: Université de Bretagne Sud, 2015.
[68]Grediac M, Hild F. Full-Field Measurements and Identification in Solid Mechanics [M]. John Wiley & Sons, 2012.
[69]Kavanagh K T, Clough R W. Finite element applications in the characterization of elastic solids [J]. International Journal of Solids and Structures, 1971, 7(1): 11-23.
[70]Ladeveze P, Leguillon D. Error estimate procedure in the finite element method and applications [J]. SIAM Journal on Numerical Analysis, 1983, 20(3): 485-509.
[71]Claire D, Hild F, Roux S. A finite element formulation to identify damage fields: The equilibrium gap method [J]. International Journal for Numerical Methods in Engineering, 2004, 61(2): 189-208.
[72]Claire D, Hild F, Roux S. Identification of damage fields using kinematic measurements [J]. Comptes Rendus. Mécanique, 2002, 330(11): 729-734.
[73]Grediac M. Principe des travaux virtuels et identification [J]. Principe Des Travaux Virtuels et Identification, 1989, 309(1): 1-5.
[74]Martins J M P, Andrade-Campos A, Thuillier S. Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements [J]. International Journal of Mechanical Sciences, 2018, 145: 330-345.
[75]Martins J M P, Andrade-Campos A, Thuillier S. Calibration of anisotropic plasticity models using a biaxial test and the virtual fields method [J]. International Journal of Solids and Structures, 2019, 172-173: 21-37.
[76]Bastos N, Prates P A, Andrade-Campos A. Material parameter identification of elastoplastic constitutive models using machine learning approaches [J]. Key Engineering Materials, 2022, 926: 2193-2200.
[77]Cruz D J, Barbosa M R, Santos A D, et al. Application of machine learning to bending processes and material identification [J]. Metals, 2021, 11(9): 1418.
[78]Jeong K, Lee K, Kwon D, et al. Parameter determination of anisotropic yield function using neural network-based indentation plastometry [J]. International Journal of Mechanical Sciences, 2024, 263: 108776.
[79]Nascimento A, Roongta S, Diehl M, et al. A machine learning model to predict yield surfaces from crystal plasticity simulations [J]. International Journal of Plasticity, 2023, 161: 103507.
[80]Logarzo H J, Capuano G, Rimoli J J. Smart constitutive laws: Inelastic homogenization through machine learning [J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113482.
[81]Tancogne-Dejean T, Gorji M B, Zhu J, et al. Recurrent neural network modeling of the large deformation of lithium-ion battery cells [J]. International Journal of Plasticity, 2021, 146: 103072.
[82]Abueidda D W, Koric S, Sobh N A, et al. Deep learning for plasticity and thermo-viscoplasticity [J]. International Journal of Plasticity, 2021, 136: 102852.
[83]Mozaffar M, Bostanabad R, Chen W, et al. Deep learning predicts path-dependent plasticity [J]. Proceedings of the National Academy of Sciences, 2019, 116(52): 26414-26420.
[84]Acar P. Machine learning reinforced crystal plasticity modeling under experimental uncertainty [J]. AIAA Journal, 2020, 58(8): 3569-3576.
[85]Bock F E, Aydin R C, Cyron C J, et al. A review of the application of machine learning and data mining approaches in continuum materials mechanics [J]. Frontiers in Materials, 2019, 6: 00110.
[86]Muhammad W, Brahme A P, Ibragimova O, et al. A machine learning framework to predict local strain distribution and the evolution of plastic anisotropy & fracture in additively manufactured alloys [J]. International Journal of Plasticity, 2021, 136: 102867.
[87]Mianroodi J R, H Siboni N, Raabe D. Teaching solid mechanics to artificial intelligence-A fast solver for heterogeneous materials [J]. NPJ Computational Materials, 2021, 7(1): 99.
[88]Heidenreich J N, Gorji M B, Mohr D. Modeling structure-property relationships with convolutional neural networks: Yield surface prediction based on microstructure images [J]. International Journal of Plasticity, 2023, 163: 103506.
[89]Frankel A, Tachida K, Jones R. Prediction of the evolution of the stress field of polycrystals undergoing elastic-plastic deformation with a hybrid neural network model [J]. Machine Learning: Science and Technology, 2020, 1(3): 035005.
[90]Pandey A, Pokharel R. Machine learning enabled surrogate crystal plasticity model for spatially resolved 3D orientation evolution under uniaxial tension [J]. arXiv preprint arXiv:2005.00951, 2020.
[91]Montes de Oca Zapiain D, Lim H, Park T, et al. Predicting plastic anisotropy using crystal plasticity and Bayesian neural network surrogate models [J]. Materials Science and Engineering: A, 2022, 833: 142472.
[92]何宽. 基于BP神经网络的晶体塑性本构参数预测方法研究 [D]. 秦皇岛:燕山大学, 2023.
He K. Study on Prediction Method of Crystal Plastic Constitutive Parameters Based on BP Neural Network Algorithm [D]. Qinhuangdao: Yanshan University, 2023.
[93]王帅帅. 基于优化算法耦合神经网络的镁合金晶体塑性本构参数识别方法 [D]. 长春:吉林大学, 2023.
Wang S S. Identification Method of Magnesium Alloy Crystal Plasticity Constitutive Parameters Based on Optimization Algorithm Coupled with Neural Network [D]. Changchun: Jilin University, 2023.
[94]Yang S, Tang X, Deng L, et al. Interpretable calibration of crystal plasticity model using a Bayesian surrogate-assisted genetic algorithm [J]. Metals, 2023, 13(1): 166.
[95]Masi F, Stefanou I, Vannucci P, et al. Material modeling via thermodynamics-based artificial neural networks [A]. Barbaresco F, Nielsen F. Geometric Structures of Statistical Physics, Information Geometry, and Learning [C]. Cham: Springer International Publishing, 2021.
[96]Masi F, Stefanou I, Vannucci P, et al. Thermodynamics-based artificial neural networks for constitutive modeling [J]. Journal of the Mechanics and Physics of Solids, 2021, 147: 104277.
[97]Vlassis N N, Sun W. Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening [J]. Computer Methods in Applied Mechanics and Engineering, 2021, 377: 113695.
|