[1]Hu Jack, Zdzislaw Marciniak, John Duncan, et al. Mechanics of Sheet Metal Forming [M]. Oxford:Elsevier, 2002.
[2]Zhang C, Wu D, He Y, et al. Twinning behavior, microstructure evolution and mechanical property of random-orientated ZK60 Mg alloy compressed at room temperature [J]. Materials, 2023, 16(3): 1163.
[3]Zhang H, Yang M, Hou M, et al. Effect of pre-existing {101-2} extension twins on mechanical properties, microstructure evolution and dynamic recrystallization of AZ31 Mg alloy during uniaxial compression [J]. Materials Science and Engineering: A, 2019, 744: 456-470.
[4]Cheng W, Hao M, Wang L, et al. Microstructure evolution and texture tailoring during hot compression at low temperatures of an extruded dilute Mg-0.5Sn-0.5Zn-0.5Al alloy [J]. Materials Science and Engineering: A, 2020, 789: 139606.
[5]Pei Y, Godfrey A, Jiang J, et al. Extension twin variant selection during uniaxial compression of a magnesium alloy [J]. Materials Science and Engineering: A, 2012, 550: 138-145.
[6]Hou M, Zhang H, Fan J, et al. Microstructure evolution and deformation behaviors of AZ31 Mg alloy with different grain orientation during uniaxial compression [J]. Journal of Alloys and Compounds, 2018, 741: 514-526.
[7]Li L, Liu W, Qi F, et al. Effects of deformation twins on microstructure evolution, mechanical properties and corrosion behaviors in magnesium alloys: A review [J]. Journal of Magnesium and Alloys, 2022, 10(9): 2334-2353.
[8]Fernández A, Prado M T P, Wei Y, et al. Continuum modeling of the response of a Mg alloy AZ31 rolled sheet during uniaxial deformation [J]. International Journal of Plasticity, 2011, 27(11): 1739-1757.
[9]Zhang F, Liu Z, Yang M, et al. Microscopic mechanism exploration and constitutive equation construction for compression characteristics of AZ31-TD magnesium alloy at high strain rate [J]. Materials Science and Engineering: A, 2020, 771: 138571.
[10]Malik A, Wang Y, Cheng H W, et al. Constitutive analysis, twinning, recrystallization, and crack in fine-grained ZK61 Mg alloy during high strain rate compression over a wide range of temperatures [J]. Materials Science and Engineering: A, 2020, 771: 138649.
[11]Xia D, Huang G S, Liu S, et al. Microscopic deformation compatibility during biaxial tension in AZ31 Mg alloy rolled sheet at room temperature [J]. Materials Science and Engineering: A, 2019, 756: 1-10.
[12]Cheng Y, Fu Y, Xin Y C, et al. {101-2} twinning behavior under biaxial tension of Mg-3Al-1Zn plate [J]. International Journal of Plasticity, 2020, 132: 102754.
[13]Fu Y, Cheng Y, Cui Y, et al. Deformation mechanisms and differential work hardening behavior of AZ31 magnesium alloy during biaxial deformation [J]. Journal of Magnesium and Alloys, 2022, 10(2): 478-491.
[14]Cai Z Y, Meng B, Wan M, et al. A modified yield function for modeling of the evolving yielding behavior and micro-mechanism in biaxial deformation of sheet metals [J]. International Journal of Plasticity, 2020, 129: 102707.
[15]Raj A, Verma R K, Singh P K, et al. Experimental and numerical investigation of differential hardening of cold rolled steel sheet under non-proportional loading using biaxial tensile test [J]. International Journal of Plasticity, 2022, 154: 103297.
[16]夏大彪.双轴应力状态下镁合金室温变形行为研究 [D].重庆:重庆大学,2019.
Xia D B. Study on the Deformation Behavior of Magnesium Alloy under Biaxial Stress State at Room Temperature [D]. Chongqing: Chongqing University, 2019.
[17]Teaca M, Charpentier I, Martiny M, et al. Identification of sheet metal plastic anisotropy using heterogeneous biaxial tensile tests [J]. International Journal of Mechanical Sciences, 2010, 52(4): 572-580.
[18]Bruschi S, Altan T, Banabic D, et al. Testing and modelling of material behaviour and formability in sheet metal forming [J]. CIRP Annals, 2014, 63(2): 727-749.
[19]Sing W M, Rao K P. Prediction of sheet-metal formability using tensile-test results [J]. Journal of Materials Processing Technology, 1993, 37(1-4): 37-51.
[20]Holmberg S, Enquist B, Thilderkvist P. Evaluation of sheet metal formability by tensile tests [J]. Journal of Materials Processing Technology, 2004, 145(1): 72-83.
[21]Tasan C C, Hoefnagels J P M, Dekkers E C A, et al. Multi-axial deformation setup for microscopic testing of sheet metal to fracture [J]. Experimental Mechanics, 2012, 52: 669-678.
[22]Jin Z Z, Zha M, Wang S Q, et al. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility [J]. Journal of Magnesium and Alloys, 2022, 10(5): 1191-1206.
[23]Kossa A. A new biaxial compression fixture for polymeric foams [J]. Polymer Testing, 2015, 45: 47-51.
[24]蔡登安,周光明. 用于材料双轴压缩试验的加载装置 [P]. 中国:CN201420589703.8, 2015-03-11.
Cai D A, Zhou G M. Loading device for biaxial compression test of materials [P]. China:CN201420589703.8, 2015-03-11.
[25]贾东,高洋,晏顺坪. 材料双轴压缩加载装置 [P]. 中国:CN201810769328.8, 2018-11-27.
Jia D, Gao Y, Yan S P. Material biaxial compression loading device [P]. China:CN201810769328.8, 2018-11-27.
[26]石宝东,申戈,杨冲. 一种用于双轴加载系统的十字压缩试样夹具及其加载方法 [P]. 中国:CN202110703324.1,2021-10-01.
Shi B D, Shen G, Yang C. The invention relates to a cross compression sample fixture for a two-axis loading system and a loading method thereof [P]. China:CN202110703324.1,2021-10-01.
[27]黄光胜,夏大彪,谢誉璐. 一种比例可调双向同步压缩实验原位观察装置 [P]. 中国:CN201810048882.7,2020-09-15.
Huang G S, Xia D B, Xie Y L. The invention relates to an in situ observation device for bidirectional synchronous compression experiment with adjustable proportion [P]. China:CN201810048882.7,2020-09-15.
[28]朱涛.不同加载路径下镁合金的孪生行为及其对塑性变形的影响 [D]. 重庆:重庆大学,2019.
Zhu T. Twinning Behavior and Its Effect on Plastic Deformation of Magnsium Alloys under Different Loading Paths [D]. Chongqing: Chongqing University, 2019.
[29]Shimizu I, Tada N. Plastic behavior of polycrystalline aluminum during biaxial compression with strain path change [J]. Key Engineering Materials, 2007, 340: 883-888.
[30]Shimizu I, Tada N, Nakayama K. The influence of strain path on biaxial compressive behavior of AZ31 magnesium alloy [J]. International Journal of Modern Physics B, 2008, 22(31-32): 5844-5849.
[31]Shimizu I, Tada N. Plastic behaviour and forming limit during biaxial compressions of magnesium alloy AZ31 at room temperature [A]. EPJ Web of Conferences [C]. EDP Sciences, 2010.
[32]Kulawinski D, Nagel K, Henkel S, et al. Characterization of stress-strain behavior of a cast TRIP steel under different biaxial planar load ratios [J]. Engineering Fracture Mechanics, 2011, 78(8): 1684-1695.
[33]Yang X, Zhao H, Shen G, et al. Effect of compressive load on texture evolution and anisotropic behavior of dual-phase steel under biaxial loading in complete σ11-σ22 space [J]. Journal of Materials Research and Technology, 2023, 27: 5140-5153.
[34]Brünig M, Gerke S, Zistl M. Experiments and numerical simulations with the H-specimen on damage and fracture of ductile metals under non-proportional loading paths [J]. Engineering Fracture Mechanics, 2019, 217: 106531.
[35]Upadhyay M V, Patra A, Wen W, et al. Mechanical response of stainless steel subjected to biaxial load path changes: Cruciform experiments and multi-scale modeling [J]. International Journal of Plasticity, 2018, 108: 144-168.
[36]Shi B, Peng Y, Yang C, et al. Loading path dependent distortional hardening of Mg alloys: Experimental investigation and constitutive modeling [J]. International Journal of Plasticity, 2017, 90: 76-95.
[37]Yang C, Shi B, Peng Y, et al. Loading path dependent distortional hardening of Mg alloys: Experimental investigation and constitutive modeling on cruciform specimens [J]. International Journal of Mechanical Sciences, 2019, 160: 282-297.
[38]刘庆. 镁合金塑性变形机理研究进展 [J]. 金属学报, 2010, 46(11): 1458-1472.
Liu Q. Research progress on plastic deformation mechanism of Mg alloys [J]. Acta Metallurgica Sinica, 2010, 46(11): 1458-1472.
[39]Xin Y, Jiang J, Chapuis A, et al. Plastic deformation behavior of AZ31 magnesium alloy under multiple passes cross compression [J]. Materials Science and Engineering: A, 2012, 532: 50-57.
[40]Xin Y C, Wang M, Zeng Z, et al. Strengthening and toughening of magnesium alloy by {101-2} extension twins [J]. Scripta Materialia, 2012, 66(1): 25-28.
[41]Xin Y C, Jiang J, Chapuis A, et al. Plastic deformation behavior of AZ31 magnesium alloy under multiple passes cross compression [J]. Materials Science and Engineering: A, 2012, 532: 50-57.
[42]Xu S, Liu T, Chen H, et al. Reducing the tension-compression yield asymmetry in a hot-rolled Mg-3Al-1Zn alloy via multidirectional pre-compression [J]. Materials Science and Engineering: A, 2013, 565: 96-101.
[43]Xin Y, Zhou X, Liu Q. Suppressing the tension-compression yield asymmetry of Mg alloy by hybrid extension twins structure [J]. Materials Science and Engineering: A, 2013, 567: 9-13.
[44]Molnar P, Ostapovets A, Jger A. Reversible motion of twin boundaries in AZ31 alloy and new design of magnesium alloys as smart materials [J]. Materials & Design, 2014, 56: 509-516.
[45]Wang Z, Liu B, Wang F, et al. Quasi-in-situ study of the twinning evolution of ZC61 alloy during dynamic ED-ERD compression process [J]. Materials Science and Engineering: A, 2022, 833: 142576.
[46]Shi Z Z, Zhang Y, Wagner F, et al. Sequential double extension twinning in a magnesium alloy: Combined statistical and micromechanical analyses [J]. Acta Materialia, 2015, 96: 333-343.
[47]Shi Z Z, Xu J Y, Yu J, et al. Intragranular cross-level twin pairs in AZ31 Mg alloy after sequential biaxial compressions [J]. Journal of Alloys and Compounds, 2018, 749: 52-59.
[48]Shi Z Z, Liu X. Double extension twin and its related compound twin structures in Mg [J]. Acta Metallurgica Sinica, 2018, 54(12): 1715-1724.
[49]Qiao H, Guo X Q, Hong S G, et al. Modeling of {101-2}-{101-2} secondary twinning in pre-compressed Mg alloy AZ31 [J]. Journal of Alloys and Compounds, 2017, 725: 96-107.
[50]Park S H, Hong S G, Lee C S. In-plane anisotropic deformation behavior of rolled Mg-3Al-1Zn alloy by initial {101-2} twins [J]. Materials Science and Engineering: A, 2013, 570: 149-163.
[51]Sarker D, Chen D L. Dependence of compressive deformation on pre-strain and loading direction in an extruded magnesium alloy: Texture, twinning and de-twinning [J]. Materials Science and Engineering: A, 2014, 596: 134-144.
[52]Xu S, Liu T, Ding X, et al. Reducing the anisotropy of a pre-twinned hot-rolled Mg-3Al-1Zn alloy by plane-strain compression [J]. Materials Science and Engineering: A, 2014, 592: 230-235.
[53]Li Y, Cui Y, Bian H, et al. Detwining in Mg alloy with a high density of twin boundaries [J]. Science and Technology of Advanced Materials, 2014, 15(3): 035003.
[54]Sarker D, Friedman J, Chen D L. Influence of pre-strain on de-twinning activity in an extruded AM30 magnesium alloy [J]. Materials Science and Engineering: A, 2014, 605: 73-79.
[55]Song B, Xin R, Liang Y, et al. Twinning characteristic and variant selection in compression of a pre-side-rolled Mg alloy sheet [J]. Materials Science and Engineering: A, 2014, 614: 106-115.
[56]郑晓剑,余辉辉,信运昌.利用孪晶界面强韧化镁合金 [J].中国材料进展, 2016,35(11):819-824,834.
Zheng X J, Yu H H, Xin Y C. Hardening and toughening Mg alloys using twin boundaries [J]. Materials China, 2016, 35(11): 819-824,834.
[57]Shi Z Z. Compound cross-grain boundary extension twin structure and its related twin variant selection in a deformed Mg alloy [J]. Journal of Alloys and Compounds, 2017, 716: 128-136.
[58]Xia D, Zhang J, Chen X, et al. Effect of biaxial compressive stress state on the microstructure evolution and deformation compatibility of rolled sheet Mg alloy AZ31 at room temperature [J]. Materials Science and Engineering: A, 2020, 789: 139599.
[59]Yang B, Shi C, Zhang S, et al. Quasi-in-situ study on {101-2} twinning-detwinning behavior of rolled Mg-Li alloy in two-step compression (RD)-compression (ND) process [J]. Journal of Magnesium and Alloys, 2022, 10(10): 2775-2787.
[60]Xin Y, Wang M, Zeng Z, et al. Tailoring the texture of magnesium alloy by twinning deformation to improve the rolling capability [J]. Scripta Materialia, 2011, 64(10): 986-989.
[61]Xin Y, Zhou X, Liu Q. Suppressing the tension-compression yield asymmetry of Mg alloy by hybrid extension twins structure [J]. Materials Science and Engineering: A, 2013, 567: 9-13.
[62]Wang Q, Chen S, Jiang B, et al. Grain size dependence of annealing strengthening of an extruded Mg-Gd-Zn alloy subjected to pre-compression deformation [J]. Journal of Magnesium and Alloys, 2022, 10(12): 3576-3588.
[63]Upadhyay M V, Capek J, Panzner T, et al. Microstructure evolution of stainless steel subjected to biaxial load path changes: In-situ neutron diffraction and multi-scale modeling [J]. International Journal of Plasticity, 2019, 122: 49-72.
[64]Van Petegem S, Wagner J, Panzner T, et al. In-situ neutron diffraction during biaxial deformation [J]. Acta Materialia, 2016, 105: 404-416.
[65]付志昌.含不同形态析出相变形镁合金的晶体塑性研究 [D]. 秦皇岛:燕山大学,2023.
Fu Z C. Crystal Plasticity Study of Deformed Magnesium Alloys Containing Different Morphological Precipitation Phases [D]. Qinhuangdao: Yanshan University, 2023.
[66]Gonzalez D, Kelleher J F, da Fonseca J Q, et al. Macro and intergranular stress responses of austenitic stainless steel to 90 strain path changes [J]. Materials Science and Engineering: A, 2012, 546: 263-271.
[67]Upadhyay M V, Capek J, Van Petegem S, et al. Intergranular strain evolution during biaxial loading: A multiscale FE-FFT approach [J]. JOM, 2017, 69: 839-847.
[68]张昆.TRIP780高强钢的断裂行为研究及半耦合韧性断裂准则的应用 [D]. 广州:华南理工大学,2021.
Zhang K. Study on Fracture Behavior of TRIP780 and Application of Semi-coupled Ductile Fracture Criterion [D]. Guangzhou: South China University of Technology, 2021.
[69]Khan A S, Kazmi R, Farrokh B. Multiaxial and non-proportional loading responses, anisotropy and modeling of Ti-6Al-4V titanium alloy over wide ranges of strain rates and temperatures [J]. International Journal of Plasticity, 2007, 23(6): 931-950.
[70]Cardoso R P R, Adetoro O B. A generalisation of the Hill′s quadratic yield function for planar plastic anisotropy to consider loading direction [J]. International Journal of Mechanical Sciences, 2017, 128: 253-268.
[71]Tang B, Wang Z, Guo N, et al. An extended Drucker yield criterion to consider tension-compression asymmetry and anisotropy on metallic materials: Modeling and verification [J]. Metals, 2019, 10(1): 20.
[72]Qiao H, Xin Y C, Zong Z L, et al. Effect of twinning on the yield surface shape of Mg alloy plates under in-plane biaxial loading [J]. International Journal of Solids and Structures, 2021, 216: 211-221.
[73]Wang J, Tang Y, Ye J, et al. Tests and finite element simulation of yield anisotropy and tension-compression strength difference of an extruded ZK60 Mg alloy [J]. Metals, 2021, 11(4): 576.
[74]Lee J, Ha J, Bong H J, et al. Evolutionary anisotropy and flow stress in advanced high strength steels under loading path changes [J]. Materials Science and Engineering: A, 2016, 672: 65-77.
[75]Schwab R, Ruff V. On the nature of the yield point phenomenon [J]. Acta Materialia, 2013, 61(5): 1798-1808.
[76]Van Liempt P, Sietsma J. A physically based yield criterion I. Determination of the yield stress based on analysis of pre-yield dislocation behaviour [J]. Materials Science and Engineering: A, 2016, 662: 80-87.
[77]Chamakura J N, Riemslag A C, Reinton T E, et al. The quantitative relationship between non-linear stress-strain behaviour and dislocation structure in martensitic stainless steel [J]. Acta Materialia, 2022, 240: 118364.
|