网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
一种镍钴基高温合金热变形行为研究
英文标题:Study on hot deformation behavior of a Ni-Co-based superalloy
作者:朱强1 2 张自昂1 2 张林福1 2 张鹏1 2 
单位:1. 哈尔滨工业大学 金属精密热加工国防科技重点实验室 2. 哈尔滨工业大学(威海)材料科学与工程学院 
关键词:镍钴基高温合金 热压缩 本构方程 热加工图 动态再结晶 
分类号:TG132.3
出版年,卷(期):页码:2024,49(7):57-63
摘要:

 利用热模拟试验机对均匀化热处理后的镍钴基高温合金进行了高温压缩试验,基于试验结果对不同变形温度和应变速率下合金的流变行为展开了研究,建立了镍钴基高温合金的热压缩本构方程及热加工图,利用电子背散射衍射(Electron Back-Scattered Diffraction,EBSD)技术对热压缩变形后微观组织进行了分析。研究结果表明:镍钴基高温合金流变应力随着变形温度的降低和应变速率的增加而逐渐增加。在所研究的变形温度区间及应变速率条件下,合金均未发生失稳现象(失稳因子均大于0)。合金的再结晶分数随着功率耗散率的增加而增加,且显著受温度影响。

 Hot compression tests were conducted on Ni-Co-based superalloy after homogenizing heat treatment by thermal simulation test machine, and based on the test results, the rheology behavior of the alloy under different deformation temperatures and strain rates was investigated. Then, the constitutive equation and hot processing maps for hot compression of Ni-Co-based superalloy were established, and the microstructure after hot compression deformation was analyzed by the electron back-scattered diffraction technique. The research esults show that the rheology stress of Ni-Co-based superalloy increases with the decreasing of deformation temperature and the increasing of strain rate. Within the investigated deformation temperature range and strain rate conditions in this study, no instability phenomena occurs in the alloy (instability factor is greater than 0). The recrystallization fraction of the alloy increases with the increasing of power dissipation rate, and it is significantly affected by temperature.

基金项目:
国家自然科学基金资助项目(52175306)
作者简介:
作者简介:朱强(1990-),男,博士,副教授 E-mail:zhuqiang@hit.edu.cn 通信作者:张鹏(1978-),男,博士,教授 E-mail:pzhang@hit.edu.cn
参考文献:

 
[1]谷月峰, 崔传勇, 袁勇, 等. 一种高性能航空涡轮盘用铸锻合金的研究进展
[J]. 金属学报, 2015, 51(10): 1191-1206.


Gu Y F, Cui C Y, Yuan Y, et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications
[J]. Acta Metallurgica Sinica, 2015, 51(10):1191-1206.


[2]郭建亭. 高温合金材料学 (下册): 高温合金材料与工程应用
[M]. 北京: 科学出版社, 2010.

Guo J T. Materials Science and Engineering for Superalloys (Volume 2)
[M]. Beijing:Science Press, 2010.


[3]江和甫. 对涡轮盘材料的需求及展望
[J]. 燃气涡轮试验与研究, 2002, 15(4):1-6. 

Jiang H F. Requirements and forecast of turbine disk materials
[J]. Gas Turbine Experiment and Research, 2002, 15(4):1-6.


[4]Liang Z, Paul J D H, Stark A, et al. High-temperature CoNi-based superalloys strengthened by γ′-(Ni, Co)3(Cr, Al, Ti, X): The effect of refractory elements
[J]. Metallurgical and Materials Transactions A, 2023, 54(5): 1620-1634.


[5]Hara T, Kobayashi S, Ueno T, et al. Estimation of γ/γ′ interfacial energy in Ni-Co base superalloy TMW-4M3
[J]. Journal of Crystal Growth, 2019, 506: 91-96.


[6]Hara T, Kobayashi S, Ueno T, et al. Microstructure prediction of TMW-4M3 during heat treatment
[J]. Computational Materials Science, 2018, 143: 95-102.


[7]Zhu C Z, Zhang R, Cui C Y, et al. Effect of Ta addition on the microstructure and tensile properties of a Ni-Co base superalloy
[J]. Metallurgical and Materials Transactions A, 2021, 52: 108-118.


[8]Huang X, Zhou X, Wang W, et al. Influence of microtwins on Portevin-Le Chtelier effect of a Ni-Co based disk superalloy
[J]. Scripta Materialia, 2022, 209: 114385.


[9]Al-Hammadi R A, Zhang R, Cui C, et al. Effects of temperature on superplastic and fracture behaviors of a Ni-Co-based superalloy
[J]. Journal of Alloys and Compounds, 2023, 958: 170524.


[10]许忠智, 韩顺, 韩文, 等. 铸态300M钢双锥试样热压缩行为
[J]. 锻压技术, 2023, 48(11): 232-237.

Xu Z Z, Han S, Han W, et al. Thermal compression behaviors of as cast 300M steel biconical specimen
[J]. Forging & Stamping Technology, 2023, 48(11): 232-237.


[11]Kumar S S S, Raghu T, Bhattacharjee P P, et al. Constitutive modeling for predicting peak stress characteristics during hot deformation of hot isostatically processed nickel-base superalloy
[J]. Journal of Materials Science, 2015, 50(19): 6444-6456.


[12]Chen X M, Lin Y C, Chen M S, et al. Microstructural evolution of a nickel-based superalloy during hot deformation
[J]. Materials and Design, 2015, 77: 41-49.


[13]Zhang P, Hu C, Ding C G, et al. Plastic deformation behavior and processing maps of a Ni-based superalloy
[J]. Materials and Design, 2014, 65: 575-584.


[14]Lin Y C, Wu X Y, Chen X M, et al. EBSD study of a hot deformed nickel-based superalloy
[J]. Journal of Alloys and Compounds, 2015, 640: 101-113.


[15]Zhang P, Hu C, Zhu Q, et al. Hot compression deformation and constitutive modeling of GH4698 alloy
[J]. Materials and Design, 2014, 65: 1153-1160.


[16]Sellars C M, McTegart W J. On the mechanism of hot deformation
[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.


[17]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel
[J]. Journal of Applied Physics, 1944, 15(1): 22-32.


[18]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242
[J]. Metallurgical Transactions A, 1984, 15: 1883-1892.


[19]Babu K A, Mandal S, Kumar A, et al. Characterization of hot deformation behavior of alloy 617 through kinetic analysis, dynamic material modeling and microstructural studies
[J]. Materials Science and Engineering: A, 2016, 664: 177-187.


[20]Li Y, Dong Y, Jiang Z, et al. Optimizing the hot deformation microstructure of GH4975 superalloy by sup-solvus temperature holding followed by extremely slow cooling
[J]. Metals and Materials International, 2024, 30(5): 1356-1369.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9