[1]谷月峰, 崔传勇, 袁勇, 等. 一种高性能航空涡轮盘用铸锻合金的研究进展 [J]. 金属学报, 2015, 51(10): 1191-1206.
Gu Y F, Cui C Y, Yuan Y, et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications [J]. Acta Metallurgica Sinica, 2015, 51(10):1191-1206.
[2]郭建亭. 高温合金材料学 (下册): 高温合金材料与工程应用 [M]. 北京: 科学出版社, 2010.
Guo J T. Materials Science and Engineering for Superalloys (Volume 2) [M]. Beijing:Science Press, 2010.
[3]江和甫. 对涡轮盘材料的需求及展望 [J]. 燃气涡轮试验与研究, 2002, 15(4):1-6.
Jiang H F. Requirements and forecast of turbine disk materials [J]. Gas Turbine Experiment and Research, 2002, 15(4):1-6.
[4]Liang Z, Paul J D H, Stark A, et al. High-temperature CoNi-based superalloys strengthened by γ′-(Ni, Co)3(Cr, Al, Ti, X): The effect of refractory elements [J]. Metallurgical and Materials Transactions A, 2023, 54(5): 1620-1634.
[5]Hara T, Kobayashi S, Ueno T, et al. Estimation of γ/γ′ interfacial energy in Ni-Co base superalloy TMW-4M3 [J]. Journal of Crystal Growth, 2019, 506: 91-96.
[6]Hara T, Kobayashi S, Ueno T, et al. Microstructure prediction of TMW-4M3 during heat treatment [J]. Computational Materials Science, 2018, 143: 95-102.
[7]Zhu C Z, Zhang R, Cui C Y, et al. Effect of Ta addition on the microstructure and tensile properties of a Ni-Co base superalloy [J]. Metallurgical and Materials Transactions A, 2021, 52: 108-118.
[8]Huang X, Zhou X, Wang W, et al. Influence of microtwins on Portevin-Le Chtelier effect of a Ni-Co based disk superalloy [J]. Scripta Materialia, 2022, 209: 114385.
[9]Al-Hammadi R A, Zhang R, Cui C, et al. Effects of temperature on superplastic and fracture behaviors of a Ni-Co-based superalloy [J]. Journal of Alloys and Compounds, 2023, 958: 170524.
[10]许忠智, 韩顺, 韩文, 等. 铸态300M钢双锥试样热压缩行为 [J]. 锻压技术, 2023, 48(11): 232-237.
Xu Z Z, Han S, Han W, et al. Thermal compression behaviors of as cast 300M steel biconical specimen [J]. Forging & Stamping Technology, 2023, 48(11): 232-237.
[11]Kumar S S S, Raghu T, Bhattacharjee P P, et al. Constitutive modeling for predicting peak stress characteristics during hot deformation of hot isostatically processed nickel-base superalloy [J]. Journal of Materials Science, 2015, 50(19): 6444-6456.
[12]Chen X M, Lin Y C, Chen M S, et al. Microstructural evolution of a nickel-based superalloy during hot deformation [J]. Materials and Design, 2015, 77: 41-49.
[13]Zhang P, Hu C, Ding C G, et al. Plastic deformation behavior and processing maps of a Ni-based superalloy [J]. Materials and Design, 2014, 65: 575-584.
[14]Lin Y C, Wu X Y, Chen X M, et al. EBSD study of a hot deformed nickel-based superalloy [J]. Journal of Alloys and Compounds, 2015, 640: 101-113.
[15]Zhang P, Hu C, Zhu Q, et al. Hot compression deformation and constitutive modeling of GH4698 alloy [J]. Materials and Design, 2014, 65: 1153-1160.
[16]Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
[17]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22-32.
[18]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metallurgical Transactions A, 1984, 15: 1883-1892.
[19]Babu K A, Mandal S, Kumar A, et al. Characterization of hot deformation behavior of alloy 617 through kinetic analysis, dynamic material modeling and microstructural studies [J]. Materials Science and Engineering: A, 2016, 664: 177-187.
[20]Li Y, Dong Y, Jiang Z, et al. Optimizing the hot deformation microstructure of GH4975 superalloy by sup-solvus temperature holding followed by extremely slow cooling [J]. Metals and Materials International, 2024, 30(5): 1356-1369.
|