网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TC18钛合金双道次热变形过程中微观组织及织构的演变规律
英文标题:Microstructure and texture evolution law of TC18 titanium alloy during double-pass hot deformation process
作者:李超1 2 张松3 蔺永诚2 
单位:1. 湖南湘投金天钛业科技股份有限公司 2. 中南大学 机电工程学院 3. 中南大学 轻合金研究院 
关键词:钛合金 双道次热变形 微观组织 织构 动态再结晶 
分类号:TG306
出版年,卷(期):页码:2024,49(7):81-89
摘要:

 采用Gleeble-3500D热模拟试验机及电子背散射衍射技术,进行了TC18钛合金双道次热变形实验和微观组织分析;详细研究了双道次热变形参数对TC18钛合金微观组织及织构演变规律的影响。结果表明:双道次热变形工艺参数显著影响合金的微观组织及织构分布;随着道次间保温时间的增加,原始β晶界附近析出大量的亚动态再结晶晶粒,使得动态再结晶分数增加;增加的温度和降低的应变速率有利于进一步提高合金的再结晶分数,从而细化其晶粒尺寸;晶粒细化过程受动态再结晶的影响,软化机制为动态回复和动态再结晶;合金中的织构以压缩丝织构、{012}<100>织构及立方织构为主。 

 The double-pass hot deformation experiments and microstructural analysis of TC18 titanium alloy were carried out by thermal simulator Gleeble-3500D and electron back scatter diffraction technology, and the influence of parameters for double-pass hot deformation on the microstructure and texture evolution laws of TC18 titanium alloy were studied in details. The results indicate that the double-pass deformation process parameters significantly affect the microstructure and texture distribution. As the inter-pass holding time increases, some meta-dynamic recrystallization grains precipitate near the grain boundaries of original β phases, resulting in increasing of dynamic recrystallization fraction. Increasing the temperature and decreasing the strain rate are beneficial for further improving the recrystallization fraction of alloy, and its grain size is refined. The grain refinement process is influenced by DRX, while the softening mechanisms are DRV and DRX. The textures in the alloy are mainly composed of compression fiber, {012}<100> and Cubic textures.

基金项目:
国家重点研发课题(2022YFB3706902)
作者简介:
作者简介:李超(1985-),男,博士,高级工程师 E-mail:187392309@qq.com 通信作者:蔺永诚(1976-),男,博士,教授 E-mail:yclin@csu.edu.cn
参考文献:

 
[1]Zhang S, Lin Y C, Jiang Y Q, et al. Accurate simulation of texture evolution and mechanical response of cubic and hexagonal structural alloys using self-consistent polycrystal plastic method
[J]. Journal of Alloys and Compounds, 2024, 987: 174191.



[2]Dong Y, Liu X G, Niu H Z, et al. Effect of β recrystallization on the precipitation evolution of primary α phase and the phase transformation inheritance during thermomechanical processing in Ti-55511 alloy
[J]. Journal of Materials Research and Technology, 2023, 27: 3579-3594.


[3]Wang Q W, Lin Y C, Jian Y Q, et al. Precipitation behavior of a β-quenched Ti-5Al-5Mo-5V-1Cr-1Fe alloy during high-temperature compression
[J]. Materials Characterization, 2019, 151: 358-367.


[4]Du Z X, Xiao S L, Xu L J, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy
[J]. Materials and Design, 2014, 55: 183-190.


[5]颜孟奇,陈立全,杨平,等. 热变形参数对TC18钛合金β相组织及织构演变规律的影响
[J]. 金属学报,2021,57(7): 880-890.

Yan M Q, Chen L Q, Yang P, et al. Effect of hot deformation parameters on the evolution of microstructure and texture of β phase in TC18 titanium alloy
[J]. Acta Metallurgica Sinica, 2021, 57(7): 880-890.


[6]张海成, 昌春艳, 周杰. TC18钛合金热锻成形换热系数实验研究
[J]. 锻压技术,2023,48(4):24-31.

Zhang H C, Chang C Y, Zhou J. Research on heat transfer coefficient in hot forging of TC18 titanium alloy
[J]. Forging & Stamping Technology, 2023,48(4):24-31.


[7]Jiang Y Q, Lin Y C, Wang G Q, et al. Microstructure evolution and a unified constitutive model for a Ti-55511 alloy deformed in β region
[J]. Journal of Alloys and Compounds, 2021, 870: 159534.


[8]Qu F S, Zhou Y H, Zhang L Y, et al. Research on hot deformation behavior of Ti-5Al-5Mo-5V-1Cr-1Fe alloy
[J]. Materials and Design, 2015, 69: 153-162.


[9]He D G, Su G, Lin Y C, et al. Microstructural variation and a physical mechanism model for a Ti-55511 alloy during double-stage hot deformation with stepped strain rates in the β region
[J]. Materials, 2021, 14(21): 6731.


[10]卢金武,张少辉,范晓杰,等. TC18合金板材热变形组织演变及其软化机制的研究
[J]. 湖南有色金属,2023,39(3):61-64,98.

Lu J W, Zhang S H, Fan X J, et al. Microstructure evolution and softening mechanism of thermal deformation TC18 titanium alloy sheet
[J]. Hunan Nonferrous Metals, 2023, 39(3): 61-64, 98.


[11]Hu Z, Zhou X Y, Nie X A, et al. Finer subgrain microstructure induced by multi-pass compression in α+β phase region in a near-β Ti-5Al-5Mo-5V-1Cr-1Fe alloy
[J]. Journal of Alloys and Compounds, 2019, 788: 136-147.


[12]GB/T 3620.1—2016, 钛及钛合金牌号和化学成分
[S].

GB/T 3620.1—2016, Designation and composition of titanium and titanium alloys
[S].


[13]Xie B C, Zhang B Y, Ning Y Q, et al. Mechanisms of DRX nucleation with grain boundary bulging and subgrain rotation during the hot working of nickel-based superalloys with columnar grains
[J]. Journal of Alloys and Compounds, 2019, 786:636-647.


[14]徐志超,杨文举,樊建峰,等. 多向压缩对TC4合金组织和织构演变规律的影响
[J]. 河南理工大学学报(自然科学版),2023,42(4):188-196.

Xu Z C, Yang W J, Fan J F, et al. Effect of multidirectional compression on microstructure,texture evolution of TC4 alloy
[J]. Journal of Henan Polytechnic University (Natural Science), 2023, 42(4):188-196.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9