网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TA32钛合金点阵结构成形与力学性能研究
英文标题:Study on forming and mechanical properties of TA32 titanium alloy lattice structure
作者:刘杨1 2 李志强3 赵冰3 孙朝阳1 2 张宁3 
单位:1. 北京科技大学 机械工程学院 2. 北京科技大学 金属轻量化成形制造北京市重点实验室 3. 中国航空制造技术研究院 
关键词:TA32钛合金 点阵结构 超塑成形/扩散连接 压缩 弯曲 力学性能 
分类号:TG302
出版年,卷(期):页码:2024,49(7):168-178
摘要:

 通过实验和仿真研究了TA32钛合金点阵结构的超塑成形过程和点阵结构不同部位压缩/弯曲力学性能与变形特征。结果表明,优化的超塑成形气压加载曲线满足了点阵结构变形应变速率约束和良好成形的需求。基于超塑变形后的有限元网格有效地构建了点阵结构力学性能仿真模型,并实现超塑成形缺陷的保留与传递。点阵结构的边缘蒙皮部位在超塑成形过程中出现了成形不完全和筋条扭曲等成形缺陷。边缘蒙皮部位点阵结构压缩过程变形特征主要为筋条塑性屈曲和结构的剪切变形相互作用,弯曲过程变形特征主要为筋条塑性屈曲和上面板皱曲。中心部位点阵结构的压缩、弯曲变形特征均为筋条塑性屈曲和筋条-面板间形成支撑结构。

 The superplastic forming process of TA32 titanium alloy lattice structure, as well as the compression/bending mechanical properties and deformation characteristics in different parts of lattice structure were investigated by experiments and simulations. The results indicate that the optimized loading curve of gas pressure for superplastic forming meets the constraint of strain rate lattice structure deformation and the requirement of precision forming. Based on the finite element mesh after superplastic deformation, the simulation model of lattice structure mechanical properties was effectively constructed, and the preserving and transferring of superplastic deformation defects were achieved. Incomplete forming and rib distortion defects are observed at the edge skin part of lattice structure during the superplastic forming process. The deformation characteristics at the edge skin part of lattice structure during the compression process are mainly the interaction between the plastic buckling of ribs and the shear deformation of structure. The deformation characteristics during the bending process are mainly the plastic buckling of ribs and the wrinkling of upper panel. The compression and bending deformation characteristics of the central lattice structure are the plastic buckling of ribs and the formation of supporting structures between ribs and panel.

基金项目:
国家自然科学基金资助项目(U22A20186);航空科学基金(2022Z047025001)
作者简介:
作者简介:刘杨(1997-),男,博士研究生 E-mail:yliu_ustb@126.com 通信作者:孙朝阳(1976-),男,博士,教授 E-mail:suncy@ustb.edu.cn
参考文献:

 
[1]Queheillalt D T, Wadley H N G. Titanium alloy lattice truss structures
[J]. Materials & Design, 2009, 30(6): 1966-1975.



[2]Queheillalt D T, Wadley H N G. Cellular metal lattices with hollow trusses
[J]. Acta Materialia, 2005, 53(2): 303-313.


[3]郭锐, 南博华, 周昊, 等. 点阵金属夹层结构抗侵彻实验研究
[J]. 振动与冲击, 2016, 35(24): 45-50.

Guo R, Nan B H, Zhou H, et al. Experiment assessment of the ballistic response of a hybrid-cored sandwich structure
[J]. Journal of Vibration and Shock, 2016, 35(24): 45-50.


[4]武永, 吴迪鹏, 陈明和. 钛合金Kagome点阵SPF/DB成形工艺及结构优化
[J]. 锻压技术, 2023, 48(5): 162-167.

Wu Y, Wu D P, Chen M H. SPF/DB forming process and structural optimization on titanium alloy Kagome lattice
[J]. Forging & Stamping Technology, 2023, 48(5): 162-167.


[5]韩数. TA15金字塔点阵超塑成形/扩散连接制备工艺及力学性能研究
[D]. 济南: 山东大学, 2019.

Han S. Study on Mechanical Properties and Manufacturing Process of SPF/DB for Pyramid Lattice Structure of TA15
[D]. Jinan: Shandong University, 2019.


[6]Wu D P, Wu Y, Fan R L, et al. A constitutive model based on internal variable method and its application to the superplastic forming of four-layer structure
[J]. The International Journal of Advanced Manufacturing Technology, 2023, 130(1-2): 915-931.


[7]赵冰, 李志强, 侯红亮, 等. 钛合金三维点阵结构制备工艺与压缩性能研究
[J]. 稀有金属, 2017, 41(3): 258-266.

Zhao B, Li Z Q, Hou H L, et al. Fabrication and compression test of titanium alloy with three dimensional lattice structure
[J]. Chinese Journal of Rare Metals, 2017, 41(3): 258-266.


[8]Du Z H, Ma S B, Han G Q, et al. The parameter optimization and mechanical property of the honeycomb structure for Ti2AlNb based alloy
[J]. Journal of Manufacturing Processes, 2021, 65: 206-213.


[9]王志录, 施文鹏, 车安达. TA33钛合金舵机支架锻造成形工艺
[J]. 锻压技术, 2023, 48(7): 57-63.

Wang Z L, Shi W P, Che A D. Forging technology of steering engine bracket for TA33 titanium alloy
[J]. Forging & Stamping Technology, 2023, 48(7): 57-63.


[10]Fan R L, Wu Y, Chen M H, et al. Prediction of anisotropic deformation behavior of TA32 titanium alloy sheet during hot tension by crystal plasticity finite element model
[J]. Materials Science and Engineering: A, 2022, 843: 143137.


[11]赵冰, 杨毅, 李志强, 等. 钛合金空心点阵超塑成形/扩散连接成形工艺和性能研究
[J]. 航空制造技术, 2023, 66(9): 24-35.

Zhao B, Yang Y, Li Z Q, et al. Research on SPF/DB process and properties of titanium alloy hollow lattice
[J]. Aeronautical Manufacturing Technology, 2023, 66(9): 24-35.


[12]GB/T 1453—2005, 夹层结构或芯子平压性能试验方法
[S].

GB/T 1453—2005, Test method for flatwise compression properties of sandwich constructions or cores
[S].


[13]GB/T 1456—2005, 夹层结构弯曲性能试验方法
[S].

GB/T 1456—2005, Test method for flexural properties of sandwich constructions
[S].


[14]Liu Y, Li Z Q, Zhao B, et al. Microstructure evolution characteristics of near-α TA32 titanium alloy during superplastic tensile deformation
[J]. Materials Science and Engineering: A, 2023, 879: 145264.


[15]Wu Y, Wu D P, Ma J, et al. A physically based constitutive model of Ti-6Al-4V and application in the SPF/DB process for a pyramid lattice sandwich panel
[J]. Archives of Civil and Mechanical Engineering, 2021, 21: 161.


[16]刘杨, 李志强, 赵冰, 等. TA32钛合金超塑性变形行为及本构模型
[J]. 稀有金属材料与工程, 2022, 51(10): 3752-3761.

Liu Y, Li Z Q, Zhao B, et al. Superplastic deformation behavior and constitutive model of TA32 titanium alloy
[J]. Rare Metal Materials and Engineering, 2022, 51(10): 3752-3761.


[17]ISO 6892-1:2009, Metallic materials-Tensile testing-Part 1: Method of test at room temperature
[S].


[18]唐玉玲, 韩露, 张峻霞, 等. 曲面碳纤维增强树脂复合材料点阵夹芯结构的弯曲和振动特性
[J]. 复合材料学报, 2023, 40(6): 3651-3661.

Tang Y L, Han L, Zhang J X, et al. Bending and vibration performance of curved carbon fiber reinforced polymer pyramidal sandwich structure
[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3651-3661.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9