[1]Queheillalt D T, Wadley H N G. Titanium alloy lattice truss structures [J]. Materials & Design, 2009, 30(6): 1966-1975.
[2]Queheillalt D T, Wadley H N G. Cellular metal lattices with hollow trusses [J]. Acta Materialia, 2005, 53(2): 303-313.
[3]郭锐, 南博华, 周昊, 等. 点阵金属夹层结构抗侵彻实验研究 [J]. 振动与冲击, 2016, 35(24): 45-50.
Guo R, Nan B H, Zhou H, et al. Experiment assessment of the ballistic response of a hybrid-cored sandwich structure [J]. Journal of Vibration and Shock, 2016, 35(24): 45-50.
[4]武永, 吴迪鹏, 陈明和. 钛合金Kagome点阵SPF/DB成形工艺及结构优化 [J]. 锻压技术, 2023, 48(5): 162-167.
Wu Y, Wu D P, Chen M H. SPF/DB forming process and structural optimization on titanium alloy Kagome lattice [J]. Forging & Stamping Technology, 2023, 48(5): 162-167.
[5]韩数. TA15金字塔点阵超塑成形/扩散连接制备工艺及力学性能研究 [D]. 济南: 山东大学, 2019.
Han S. Study on Mechanical Properties and Manufacturing Process of SPF/DB for Pyramid Lattice Structure of TA15 [D]. Jinan: Shandong University, 2019.
[6]Wu D P, Wu Y, Fan R L, et al. A constitutive model based on internal variable method and its application to the superplastic forming of four-layer structure [J]. The International Journal of Advanced Manufacturing Technology, 2023, 130(1-2): 915-931.
[7]赵冰, 李志强, 侯红亮, 等. 钛合金三维点阵结构制备工艺与压缩性能研究 [J]. 稀有金属, 2017, 41(3): 258-266.
Zhao B, Li Z Q, Hou H L, et al. Fabrication and compression test of titanium alloy with three dimensional lattice structure [J]. Chinese Journal of Rare Metals, 2017, 41(3): 258-266.
[8]Du Z H, Ma S B, Han G Q, et al. The parameter optimization and mechanical property of the honeycomb structure for Ti2AlNb based alloy [J]. Journal of Manufacturing Processes, 2021, 65: 206-213.
[9]王志录, 施文鹏, 车安达. TA33钛合金舵机支架锻造成形工艺 [J]. 锻压技术, 2023, 48(7): 57-63.
Wang Z L, Shi W P, Che A D. Forging technology of steering engine bracket for TA33 titanium alloy [J]. Forging & Stamping Technology, 2023, 48(7): 57-63.
[10]Fan R L, Wu Y, Chen M H, et al. Prediction of anisotropic deformation behavior of TA32 titanium alloy sheet during hot tension by crystal plasticity finite element model [J]. Materials Science and Engineering: A, 2022, 843: 143137.
[11]赵冰, 杨毅, 李志强, 等. 钛合金空心点阵超塑成形/扩散连接成形工艺和性能研究 [J]. 航空制造技术, 2023, 66(9): 24-35.
Zhao B, Yang Y, Li Z Q, et al. Research on SPF/DB process and properties of titanium alloy hollow lattice [J]. Aeronautical Manufacturing Technology, 2023, 66(9): 24-35.
[12]GB/T 1453—2005, 夹层结构或芯子平压性能试验方法 [S].
GB/T 1453—2005, Test method for flatwise compression properties of sandwich constructions or cores [S].
[13]GB/T 1456—2005, 夹层结构弯曲性能试验方法 [S].
GB/T 1456—2005, Test method for flexural properties of sandwich constructions [S].
[14]Liu Y, Li Z Q, Zhao B, et al. Microstructure evolution characteristics of near-α TA32 titanium alloy during superplastic tensile deformation [J]. Materials Science and Engineering: A, 2023, 879: 145264.
[15]Wu Y, Wu D P, Ma J, et al. A physically based constitutive model of Ti-6Al-4V and application in the SPF/DB process for a pyramid lattice sandwich panel [J]. Archives of Civil and Mechanical Engineering, 2021, 21: 161.
[16]刘杨, 李志强, 赵冰, 等. TA32钛合金超塑性变形行为及本构模型 [J]. 稀有金属材料与工程, 2022, 51(10): 3752-3761.
Liu Y, Li Z Q, Zhao B, et al. Superplastic deformation behavior and constitutive model of TA32 titanium alloy [J]. Rare Metal Materials and Engineering, 2022, 51(10): 3752-3761.
[17]ISO 6892-1:2009, Metallic materials-Tensile testing-Part 1: Method of test at room temperature [S].
[18]唐玉玲, 韩露, 张峻霞, 等. 曲面碳纤维增强树脂复合材料点阵夹芯结构的弯曲和振动特性 [J]. 复合材料学报, 2023, 40(6): 3651-3661.
Tang Y L, Han L, Zhang J X, et al. Bending and vibration performance of curved carbon fiber reinforced polymer pyramidal sandwich structure [J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3651-3661.
|