网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于塑性演化的非关联Hill48屈服准则及其在超高强DP钢板中的应用建模预测
英文标题:Non-associated Hill48 yield criterion based on plastic evolution and its application in ultra-high strength DP steel sheet
作者:周兵营1 崔学习2 关铂镔3 吴向东1 万敏1 
单位:1.北京航空航天大学 机械工程及自动化学院 2. 北京航天试验技术研究所 运载试验技术事业部 3.中国运载火箭技术研究院 空间物理重点实验室 
关键词:超高强DP钢板 屈服准则 非关联流动法则 塑性演化 屈服轨迹 
分类号:TG301
出版年,卷(期):页码:2024,49(7):217-225
摘要:

 针对超高强DP钢板在复杂加载条件下的塑性行为,采用一种考虑塑性演化的非关联Hill48屈服准则,实现了以较简单的屈服方程准确地预测DP钢屈服及后继屈服轨迹的目的。通过0°、45°和90°方向的单拉实验和复杂加载比例的十字形试件双拉实验,获得了超高强DP1180钢板的基本力学性能参数和拉伸屈服轨迹,采用不同的屈服准则对实验屈服轨迹进行预测。研究表明,考虑塑性演化的非关联Hill48屈服准则对DP1180钢板初始屈服轨迹的预测精度与Yld2000-2d屈服准则预测精度相近,而且还能以同等的精度预测后继屈服轨迹,可以超高强DP钢板屈服及后继屈服行为的精确表征,可应用于超高强DP钢板材冲压成形过程的有限元分析、模具设计和工艺优化。

 For the plastic behavior of ultra-high strength DP steel sheet under complex loading condition, based on an non-associated Hill48 yield criterion considering plastic evolution, the initial and subsequent yield locus of DP steel predicted accurately by a simple yield equation were realized. Then, the basic mechanical properties and tensile yield locus of ultra-high strength DP1180 steel sheet were obtained by uniaxial tensile tests in 0°, 45° and 90° directions and biaxial tensile tests of cross-shaped specimens with complex proportional loading, and the experimental yield locus was predicted by using different yield criteria. The results show that the prediction accuracy of the non-associated Hill48 yield criterion considering plastic evolution for the initial yield locus of DP1180 steel sheet is similar to that of Yld2000-2d yield criterion, which can also predict the subsequent yield locus with the same highest accuracy and realize the precise characterization of the initial and subsequent yield behaviors of ultra-high strength DP1180 steel sheet, and can be applied to finite element analysis, die design and process optimization of stamping process for ultra-high strength DP steel sheet.

基金项目:
国家自然科学基金资助项目(51875027);宝钢汽车用钢开发与应用技术国家重点实验室基金资助项目(2021090602)
作者简介:
作者简介:周兵营(1994-),男,博士研究生 E-mail:zhoubingying@buaa.edu.cn 通信作者:吴向东(1970-),男,博士,副教授 E-mail:wuxiangdongbuaa@163.com
参考文献:

 
[1]林忠钦, 黄庆学, 苑世剑, 等. 中国塑性成形技术和装备30年的重大突破与进展
[J]. 塑性工程学报, 2024, 31(4): 2-45.


Lin Z Q, Huang Q X, Yuan S J, et al. Major breakthrough and progress in metal forming technology and equipment of China in the last 30 years
[J]. Journal of Plasticity Engineering, 2024, 31(4): 2-45.


[2]陈锐. 基于Yoshida-Uemori模型的超高强钢板成形预测分析
[D]. 重庆: 重庆大学, 2022.

Chen R. Analysis of Forming Prediction of the Ultra-high Strength Steel Based on the Yoshida-Uemori Model
[D]. Chongqing: Chongqing University, 2022.


[3]邹隆勋, 徐栋恺, 李细锋, 等. 脉冲电流对MS1300超高强钢拉伸变形行为的影响
[J]. 塑性工程学报, 2022, 29(10): 196-201.

Zou L X, Xu D K, Li X F, et al. Effect of pulse current on tensile deformation behavior of MS1300 ultrahigh strength steel
[J]. Journal of Plasticity Engineering, 2022, 29(10): 196-201.


[4]程姣姣. 超高强钢非对称截面薄壁构件辊弯成形回弹及扭转问题研究
[D]. 北京: 北京科技大学, 2023.

Cheng J J. Research on Springback and Twist of Ultra High Strength Steel Thin-walled Conponents with Asymmetric Section in Roll Forming Process
[D]. Beijing: University of Science and Technology Beijing, 2023.


[5]孟伊帆. 超高强钢辊弯成形工艺与组织性能关系的研究
[D]. 北京: 北方工业大学, 2023.

Meng Y F. Research on the Relationship Between Roll Forming Process and Microstructure and Properties of Ultra High Strength Steel
[D]. Beijing: North China University of Technology, 2023.


[6]宋燕利, 刘煜键, 方志凌, 等. 超高强钢构件热冲压成形技术与应用
[J]. 机械工程学报, 2023, 59(20): 154-178.

Song Y L, Liu Y J, Fang Z L, et al. Hot stamping technology and application of ultra-high strength steel components
[J]. Journal of Mechanical Engineering, 2023, 59(20): 154-178.


[7]周珍林. 全过程数字化超高强钢成形质量控制方法
[J]. 模具制造, 2023, 23(5): 5-9.

Zhou Z L. Digital quality control method for ultra-highstrength steel forming in the whole process
[J]. Die & Mould Manufacture, 2023, 23(5): 5-9.


[8]穆振凯. 正交各向异性金属薄板后继屈服
[D]. 秦皇岛: 燕山大学, 2023.

Mu Z K. Subsequent Yield of Orthotropic Sheet Metal
[D]. Qinhuangdao: Yanshan University, 2023.


[9]方刚, 陈祝, 雷丽萍. 非关联本构模型在铝合金板料成形有限元模拟中的应用
[J]. 塑性工程学报, 2021, 28(6): 8-18.

Fang G, Chen Z, Lei L P. Application of non-associated constitutive models in finite elementsimulation of aluminum alloy sheet forming
[J]. Journal of Plasticity Engineering, 2021, 28(6): 8-18.


[10]Stoughton T B, Yoon J W. Anisotropic hardening and non-associated flow in proportional loading of sheet metals
[J]. International Journal of Plasticity, 2009, 25(9): 1777-1817.


[11]Lee J H. Research note on a simple model for pressure-sensitive strain-hardening materials
[J]. International Journal of Plasticity, 1988, 4(3): 265-278.


[12]Stoughton T B. A non-associated flow rule for sheet metal forming
[J]. International Journal of Plasticity, 2002, 18(5): 687-714.


[13]钱小磊. 基于实验的镁合金本构模型及其在轧制数值模拟中的应用研究
[D]. 沈阳: 吉林大学, 2014.

Qian X L. Study on Experiment-based Constitutive Model of Magnesium Alloy and Its Application in Numerical Simulation of Rolling Process
[D]. Shenyang: Jilin University, 2014.


[14]Wang G, Qian X L, Li X, et al. A study on compressive anisotropy and nonassociated flow plasticity of the AZ31 magnesium alloy in hot rolling
[J]. Mathematical Problems in Engineering, 2014, 2014: 256194.


[15]朱俊儿. 应变率相关的高强钢板材屈服准则与失效模型研究及应用
[D]. 北京: 清华大学, 2015.

Zhu J E. Modeling the Strain-rate Dependent Yielding and Failure Behavior of High Strength Steel Sheets
[D]. Beijing: Tsinghua University, 2015.


[16]Zhu J E, Xia Y, Luo H, et al. Influence of flow rule and calibration approach on plasticity characterization of DP780 steel sheets using Hill48 model
[J]. Int. J. Mech. Sci., 2014, 89: 148-157.


[17]Safaei M, Lee M G, Zang S L, et al. An evolutionary anisotropic model for sheet metals based on non-associated flow rule approach
[J]. Comput.Mater Sci., 2014, 81: 15-29.


[18]Cai Z, Diao K, Wu X, et al. Constitutive modeling of evolving plasticity in high strength steel sheets
[J]. Int. J. Mech. Sci., 2016, 107: 43-57.


[19]Lian J, Shen F, Jia X, et al. An evolving non-associated Hill48 plasticity model accounting for anisotropic hardening and r-value evolution and its application to forming limit prediction
[J]. International Journal of Solids and Structures, 2018, 151: 20-44.


[20]Shen F, Münstermann S, Lian J. An evolving plasticity model considering anisotropy, thermal softening and dynamic strain aging
[J]. International Journal of Plasticity, 2020, 132: 102747.


[21]Shen F, Münstermann S, Lian J. Forming limit prediction by the Marciniak-Kuczynski model coupled with the evolving non-associated Hill48 plasticity model
[J]. J. Mater. Process. Technol., 2021, 287: 116384.


[22]Mu Z, Zhao J, Meng Q, et al. Anisotropic hardening and evolution of r-values for sheet metal based on evolving non-associated Hill48 model
[J]. Thin-Walled Structures, 2022, 171: 108791.


[23]王逸涵, 董红瑞, 王海波, 等. 基于非关联Hill48塑性模型的TC1钛合金板本构模型
[J]. 塑性工程学报, 2022, 29(2): 180-184.

Wang Y H, Dong H R, Wang H B, et al. Constitutive model of TC1 titanium alloy sheet based on non-associated Hill48 plastic model
[J]. Journal of Plasticity Engineering, 2022, 29(2): 180-184.


[24]Hill R. A theory of the yielding and plastic flow of anisotropic metals
[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1948, 193(1033): 281-297.


[25]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法
[S].

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room tenperature
[S].


[26]GB/T 36024—2018, 金属材料薄板和薄带十字形试样双向拉伸试验方法
[S].

GB/T 36024—2018, Metallic materials—Sheet and strip—Biaxial tensile testing method using a cruciform test piece
[S].


[27]周兵营, 豆远航, 吴向东, 等. TA4纯钛带材各向异性屈服行为表征与研究
[J]. 精密成形工程, 2023, 15(2): 11-18.

Zhou B Y, Dou Y H, Wu X D, et al. Characterization and study on anisotropic yield behavior of TA4 pure titanium strip
[J]. Journal of Netshape Forming Engineering, 2023, 15(2): 11-18.


[28]翟京. 双向拉压力学试验机的装备开发与实验研究
[D]. 北京: 北方工业大学, 2014.

Zhai J. Hardware Development and Experimental Research of Biaxial Tension and Compression Mechanical Testing Mechine
[D]. Beijing: North China University of Technology, 2014.


[29]吴向东. 不同加载路径下各向异性板料塑性变形行为的研究
[D]. 北京: 北京航空航天大学, 2003.

Wu X D. Research on the Plastic Deformation Behavior of Anisotropic Sheet Metal under Different Loading Paths
[D]. Beijing: Beihang University, 2003.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9