[1]林忠钦, 黄庆学, 苑世剑, 等. 中国塑性成形技术和装备30年的重大突破与进展 [J]. 塑性工程学报, 2024, 31(4): 2-45.
Lin Z Q, Huang Q X, Yuan S J, et al. Major breakthrough and progress in metal forming technology and equipment of China in the last 30 years [J]. Journal of Plasticity Engineering, 2024, 31(4): 2-45.
[2]陈锐. 基于Yoshida-Uemori模型的超高强钢板成形预测分析 [D]. 重庆: 重庆大学, 2022.
Chen R. Analysis of Forming Prediction of the Ultra-high Strength Steel Based on the Yoshida-Uemori Model [D]. Chongqing: Chongqing University, 2022.
[3]邹隆勋, 徐栋恺, 李细锋, 等. 脉冲电流对MS1300超高强钢拉伸变形行为的影响 [J]. 塑性工程学报, 2022, 29(10): 196-201.
Zou L X, Xu D K, Li X F, et al. Effect of pulse current on tensile deformation behavior of MS1300 ultrahigh strength steel [J]. Journal of Plasticity Engineering, 2022, 29(10): 196-201.
[4]程姣姣. 超高强钢非对称截面薄壁构件辊弯成形回弹及扭转问题研究 [D]. 北京: 北京科技大学, 2023.
Cheng J J. Research on Springback and Twist of Ultra High Strength Steel Thin-walled Conponents with Asymmetric Section in Roll Forming Process [D]. Beijing: University of Science and Technology Beijing, 2023.
[5]孟伊帆. 超高强钢辊弯成形工艺与组织性能关系的研究 [D]. 北京: 北方工业大学, 2023.
Meng Y F. Research on the Relationship Between Roll Forming Process and Microstructure and Properties of Ultra High Strength Steel [D]. Beijing: North China University of Technology, 2023.
[6]宋燕利, 刘煜键, 方志凌, 等. 超高强钢构件热冲压成形技术与应用 [J]. 机械工程学报, 2023, 59(20): 154-178.
Song Y L, Liu Y J, Fang Z L, et al. Hot stamping technology and application of ultra-high strength steel components [J]. Journal of Mechanical Engineering, 2023, 59(20): 154-178.
[7]周珍林. 全过程数字化超高强钢成形质量控制方法 [J]. 模具制造, 2023, 23(5): 5-9.
Zhou Z L. Digital quality control method for ultra-highstrength steel forming in the whole process [J]. Die & Mould Manufacture, 2023, 23(5): 5-9.
[8]穆振凯. 正交各向异性金属薄板后继屈服 [D]. 秦皇岛: 燕山大学, 2023.
Mu Z K. Subsequent Yield of Orthotropic Sheet Metal [D]. Qinhuangdao: Yanshan University, 2023.
[9]方刚, 陈祝, 雷丽萍. 非关联本构模型在铝合金板料成形有限元模拟中的应用 [J]. 塑性工程学报, 2021, 28(6): 8-18.
Fang G, Chen Z, Lei L P. Application of non-associated constitutive models in finite elementsimulation of aluminum alloy sheet forming [J]. Journal of Plasticity Engineering, 2021, 28(6): 8-18.
[10]Stoughton T B, Yoon J W. Anisotropic hardening and non-associated flow in proportional loading of sheet metals [J]. International Journal of Plasticity, 2009, 25(9): 1777-1817.
[11]Lee J H. Research note on a simple model for pressure-sensitive strain-hardening materials [J]. International Journal of Plasticity, 1988, 4(3): 265-278.
[12]Stoughton T B. A non-associated flow rule for sheet metal forming [J]. International Journal of Plasticity, 2002, 18(5): 687-714.
[13]钱小磊. 基于实验的镁合金本构模型及其在轧制数值模拟中的应用研究 [D]. 沈阳: 吉林大学, 2014.
Qian X L. Study on Experiment-based Constitutive Model of Magnesium Alloy and Its Application in Numerical Simulation of Rolling Process [D]. Shenyang: Jilin University, 2014.
[14]Wang G, Qian X L, Li X, et al. A study on compressive anisotropy and nonassociated flow plasticity of the AZ31 magnesium alloy in hot rolling [J]. Mathematical Problems in Engineering, 2014, 2014: 256194.
[15]朱俊儿. 应变率相关的高强钢板材屈服准则与失效模型研究及应用 [D]. 北京: 清华大学, 2015.
Zhu J E. Modeling the Strain-rate Dependent Yielding and Failure Behavior of High Strength Steel Sheets [D]. Beijing: Tsinghua University, 2015.
[16]Zhu J E, Xia Y, Luo H, et al. Influence of flow rule and calibration approach on plasticity characterization of DP780 steel sheets using Hill48 model [J]. Int. J. Mech. Sci., 2014, 89: 148-157.
[17]Safaei M, Lee M G, Zang S L, et al. An evolutionary anisotropic model for sheet metals based on non-associated flow rule approach [J]. Comput.Mater Sci., 2014, 81: 15-29.
[18]Cai Z, Diao K, Wu X, et al. Constitutive modeling of evolving plasticity in high strength steel sheets [J]. Int. J. Mech. Sci., 2016, 107: 43-57.
[19]Lian J, Shen F, Jia X, et al. An evolving non-associated Hill48 plasticity model accounting for anisotropic hardening and r-value evolution and its application to forming limit prediction [J]. International Journal of Solids and Structures, 2018, 151: 20-44.
[20]Shen F, Münstermann S, Lian J. An evolving plasticity model considering anisotropy, thermal softening and dynamic strain aging [J]. International Journal of Plasticity, 2020, 132: 102747.
[21]Shen F, Münstermann S, Lian J. Forming limit prediction by the Marciniak-Kuczynski model coupled with the evolving non-associated Hill48 plasticity model [J]. J. Mater. Process. Technol., 2021, 287: 116384.
[22]Mu Z, Zhao J, Meng Q, et al. Anisotropic hardening and evolution of r-values for sheet metal based on evolving non-associated Hill48 model [J]. Thin-Walled Structures, 2022, 171: 108791.
[23]王逸涵, 董红瑞, 王海波, 等. 基于非关联Hill48塑性模型的TC1钛合金板本构模型 [J]. 塑性工程学报, 2022, 29(2): 180-184.
Wang Y H, Dong H R, Wang H B, et al. Constitutive model of TC1 titanium alloy sheet based on non-associated Hill48 plastic model [J]. Journal of Plasticity Engineering, 2022, 29(2): 180-184.
[24]Hill R. A theory of the yielding and plastic flow of anisotropic metals [J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1948, 193(1033): 281-297.
[25]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法 [S].
GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room tenperature [S].
[26]GB/T 36024—2018, 金属材料薄板和薄带十字形试样双向拉伸试验方法 [S].
GB/T 36024—2018, Metallic materials—Sheet and strip—Biaxial tensile testing method using a cruciform test piece [S].
[27]周兵营, 豆远航, 吴向东, 等. TA4纯钛带材各向异性屈服行为表征与研究 [J]. 精密成形工程, 2023, 15(2): 11-18.
Zhou B Y, Dou Y H, Wu X D, et al. Characterization and study on anisotropic yield behavior of TA4 pure titanium strip [J]. Journal of Netshape Forming Engineering, 2023, 15(2): 11-18.
[28]翟京. 双向拉压力学试验机的装备开发与实验研究 [D]. 北京: 北方工业大学, 2014.
Zhai J. Hardware Development and Experimental Research of Biaxial Tension and Compression Mechanical Testing Mechine [D]. Beijing: North China University of Technology, 2014.
[29]吴向东. 不同加载路径下各向异性板料塑性变形行为的研究 [D]. 北京: 北京航空航天大学, 2003.
Wu X D. Research on the Plastic Deformation Behavior of Anisotropic Sheet Metal under Different Loading Paths [D]. Beijing: Beihang University, 2003.
|