网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于扩展GTN-Thomason模型的Fe-Cr-Mo-Mn钢韧性断裂行为预测
英文标题:Prediction of ductile fracture behavior for Fe-Cr-Mo-Mn steel based on extended GTN-Thomason model
作者:王凡1 2 孙振栋1 2 刘国强1 2 沈德鹏1 2 郭宁1 2 郭甫3 张振3  孙伟3 唐炳涛1 2 
单位:1.齐鲁工业大学(山东省科学院)机械工程学院 2.山东省机械设计研究院 3.金雷科技股份公司 
关键词:Fe-Cr-Mo-Mn钢 动态再结晶 空洞演化 扩展GTN-Thomason模型 韧性断裂 
分类号:TG142
出版年,卷(期):页码:2024,49(7):235-242
摘要:

 采用Gleeble热模拟试验机对Fe-Cr-Mo-Mn钢进行热拉伸实验,研究了工艺参数的改变对材料动态再结晶(Dynamic Recrystallization,DRX)行为的影响,而塑性变形过程中的DRX会诱导材料产生软化效应,导致位错密度和变形能降低,并降低流动应力和应变硬化,从而影响空洞演化的方式。考虑热加工过程中DRX对空洞演变的影响,建立了扩展GTN-Thomason韧性断裂模型。该模型引入了动态再结晶体积分数Xdrx,并采用空洞体积分数来描述损伤累积,利用指数函数描述空洞形核应变和临界空洞尺寸比的变化。开发的模型应用于有限元模拟,并使用混合数值-实验法校准其参数。设计了多种应力状态和温度下的实验验证了韧性断裂模型的有效性。

 Hot tensile experiments were conducted on Fe-Cr-Mo-Mn steel by a Gleeble thermal simulation test machine to investigate the influence of process parameters on the dynamic recrystallization (DRX) behavior of material. However, DRX during the plastic deformation process induced a softening effect in the material, leading to a decrease in dislocation density and deformation energy, as well as a reduction in flow stress and strain hardening, thus impacting the mode of void evolution. Therefore, considering the influence of DRX on void evolution during hot processing, an extended GTN-Thomason ductile fracture model was developed, which introduced a dynamic recrystallization volume fraction Xdrx and applied the void volume fraction to describe damage accumulation, and the change in void nucleation strain and critical void size ratio was described by exponential functions. The developed model was used in finite element simulation, and a hybrid numerical-experimental method was used to calibrate its parameters. Experiments at various stress states and temperatures were designed to verify the validity of the ductile fracture model.

基金项目:
泰山产业领军人才工程蓝色人才专项(TSLS20221101);济南市科技计划“揭榜挂帅”项目(202323007)
作者简介:
作者简介:王凡(2000-),男,硕士研究生 E-mail:10431220023@stu.qlu.edu.cn 通信作者:唐炳涛(1976-),男,博士,教授 E-mail:tbtsh@hotmail.com
参考文献:

 
[1]赵顺治,景财年,林涛,等.基于Deform 3D的风机主轴空心轴预制坯成形优化
[J].锻压技术, 2022, 47(6): 47-54.


Zhao S Z, Jing C N, Lin T, et al.Optimization of the forming process for hollow shaft preform of wind turbine main shaft based on Deform 3D
[J].Forging & Stamping Technology, 2022, 47(6): 47-54.


[2]Qin F, Li Y, Qi H, et al.Deformation behavior and microstructure evolution of as-cast 42CrMo alloy in isothermal and non-isothermal compression
[J].Journal of Materials Engineering and Performance, 2016, 25(11): 5040-5048.


[3]Achouri M, Germain G, Dal Santo P, et al.Experimental characterization and numerical modeling of micromechanical damage under different stress states
[J].Materials & Design, 2013, 50: 207-222.


[4]Gurson A L.Continuum theory of ductile rupture by void nucleation and growth: Part Ⅰ-Yield criteria and flow rules for porous ductile media
[J].Journal of Engineering Materials and Technology, 1977, 99(1): 2-15.


[5]Tvergaard V, Needleman A.Analysis of the cup-cone fracture in a round tensile bar
[J].Acta Metallurgica, 1984, 32(1): 157-169.


[6]Gatea S, Ou H, Lu B, et al.Modelling of ductile fracture in single point incremental forming using a modified GTN model
[J].Engineering Fracture Mechanics, 2017, 186: 59-79.


[7]Rice J R, Tracey D M.On the ductile enlargement of voids in triaxial stress fields
[J].Journal of the Mechanics and Physics of Solids, 1969, 17(3): 201-217.
[8]Xue L.Constitutive modeling of void shearing effect in ductile fracture of porous materials
[J].Engineering Fracture Mechanics, 2008, 75(11): 3343-3366.


[9]Malcher L, Andrade Pires F M, César DE Sá J M A.An extended GTN model for ductile fracture under high and low stress triaxiality
[J].International Journal of Plasticity, 2014, 54: 193-228.


[10]Thomason P F.A theory for ductile fracture by internal necking of cavities
[J].Journal of the Institute of Metals, 1968, 96: 360-365.


[11]Thomason P F.Ductile fracture by the growth and coalescence of microvoids of non-uniform size and spacing
[J].Acta Metallurgica et Materialia, 1993, 41(7): 2127-2134.


[12]Oyane M.Criteria of ductile fracture strain
[J].Bulletin of JSME, 1972, 15(90): 1507-1513.


[13]Jafari M, Najafizadeh A.Correlation between Zener-Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel
[J].Materials Science and Engineering: A, 2009, 501(1): 16-25.


[14]Mikó T, Barkoczy P.Determination of the onset of the dynamic recystallization of a 7075 Al alloy
[J].Materials Science Forum, 2013, 752: 105-114.


[15]He J, Cui Z, Chen F, et al.The new ductile fracture criterion for 30Cr2Ni4MoV ultra-super-critical rotor steel at elevated temperatures
[J].Materials & Design, 2013, 52: 547-555.


[16]Shang X Q, Cui Z S, Fu M W, et al.Dynamic recrystallization based ductile fracture modeling in hot working of metallic materials
[J].International Journal of Plasticity, 2017, 95: 105-122.


[17]Chen M S, Yuan W Q, Lin Y C, et al.Modeling and simulation of dynamic recrystallization behavior for 42CrMo steel by an extended cellular automaton method
[J].Vacuum, 2017, 146: 142-151.


[18]Bambach M.Implications from the Poliak-Jonas criterion for the construction of flow stress models incorporating dynamic recrystallization
[J].Acta Materialia, 2013, 61(16): 6222-6233.


[19]Chu C C, Needleman A.Void nucleation effects in biaxially stretched sheets
[J].Journal of Engineering Materials and Technology, 1980, 102(3): 249-256.


[20]Nahshon K, Hutchinson J W.Modification of the Gurson model for shear failure
[J].European Journal of Mechanics-A/Solids, 2008, 27(1): 1-17.


[21]Xue L.Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading
[J].International Journal of Solids and Structures, 2007, 44(16): 5163-5181.


[22]Nielsen K L, Tvergaard V.Ductile shear failure or plug failure of spot welds modelled by modified Gurson model
[J].Engineering Fracture Mechanics, 2010, 77(7): 1031-1047.


[23]Weck A, Wilkinson D S.Experimental investigation of void coalescence in metallic sheets containing laser drilled holes
[J].Acta Materialia, 2008, 56(8): 1774-1784.


[24]Brown L M, Embury J D.Initiation and growth of voids at second-phase particles
[A].Proceedings of the Institute of Metals
[C].London: Institute of Metals, 1973.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9