网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车驱动电机轴承外圈感应回火工艺数值模拟分析
英文标题:Numerical simulation analysis on induction tempering process for automotive drive motor bearing outer ring
作者:魏文婷1 2 3 王贵龙1 2 3 赵天翼1 2 3 
单位:1. 武汉理工大学 现代汽车零部件技术湖北省重点实验室 2. 武汉理工大学 汽车零部件技术湖北省协同创新中心 3. 武汉理工大学 汽车工程学院 
关键词:汽车驱动电机轴承 GCr15钢 感应回火 组织分布 残余奥氏体 
分类号:TG156
出版年,卷(期):页码:2024,49(7):251-263
摘要:

 为了研究感应回火工艺参数对温度和组织分布的影响规律,实现对驱动电机轴承的微观组织调控,改善轴承表面硬度与力学性能,建立了轴承外圈感应回火电磁-温度-组织多场耦合有限元模型,研究了感应回火工艺参数对轴承截面温度场和组织含量的影响规律,并通过实验验证了仿真模型的有效性。结果表明:感应回火过程中,轴承截面沿径向出现了一定的温度差,残余奥氏体含量沿截面径向呈梯度分布;随着电流密度和电流频率的增加或空气间隙的减小,轴承外圈的温度差增大,径向整体残余奥氏体含量增高且梯度越明显。

  In order to research the influence of induction tempering process parameters on temperature and microstructure distribution, realize the microstructure control of drive motor bearing, and improve the surface hardness and mechanical properties of bearing, a multi-field coupled electromagnetic-temperature-microstructure finite element model for induction tempering of bearing outer ring was established. Then, the influence laws of the induction tempering process parameters on the temperature field and the microstructure content of bearing cross-section were investigated, and the validity of the simulation model was verified by experiments. The results show that during the induction tempering process, the bearing cross-section appears a certain temperature difference along the radial direction, and the residual austenite content shows a gradient distribution along the radial direction of the cross-section. With the increasing of current density and current frequency or the decreasing of air gap, the temperature difference of bearing outer ring increases and the residual austenite content in the radial direction improves, and the gradient is more obvious.

基金项目:
湖北省自然科学基金面上项目( 2022CFB378);省部共建耐火材料与冶金国家重点实验室开放基金(G202403)
作者简介:
作者简介:魏文婷(1985-),女,博士,副教授 E-mail:wei_wt@whut.edu.cn
参考文献:

 
[1]韩晋军. 新能源汽车轴承设计研究
[J]. 中国高新科技, 2018, 26(14): 25-27.


Han J J. Research on new energy vehicle bearing design
[J]. China High and New Technology, 2018, 26(14): 25-27.


[2]Wen C, David S M. Stability of retained austenite in martensitic high carbon steels. Part I: Thermal stability
[J]. Materials Science and Engineering A, 2018, 711:683-695.


[3]蔡沛松, 赵海霞, 张军梅, 等. 基于ANSYS的钢板加热过程仿真分析
[J]. 中北大学学报(自然科学版), 2022, 43(4): 313-320.

Cai P S, Zhao H X, Zhang J M, et al. Simulation analysis of steel plate heating process based on ANSYS
[J]. Journal of North University of China (Natural Science Edition), 2022, 43(4): 313-320.


[4]沈庆通. 感应热处理的发展回顾与期望
[J]. 金属加工(热加工), 2019(7): 3-7.

Shen Q T. Review and expectation of the development of induction heat treatment
[J]. MW Metal Forming, 2019(7): 3-7.


[5]田华. 感应回火工艺研究
[J]. 热处理, 2022, 37(2): 19-22.

Tian H. Research on induction tempering process
[J]. Heat Treatment, 2022, 37(2): 19-22.


[6]Xie Z J, Fang Y P, Han G, et al. Structure-property relationship in a 960 MPa grade ultrahigh strength low carbon niobium-vanadium microalloyed steel: The significance of high frequency induction tempering
[J]. Materials Science and Engineering A, 2014, 618: 112-117.


[7]房玉佩, 谢振家, 尚成嘉. 感应回火对1000 MPa级高强度低合金钢碳化物析出行为及韧性的影响
[J]. 金属学报, 2014, 50(12): 1413-1420.

Fang Y P, Xie Z J, Shang C J. Effect of induction tempering on carbide precipitation behavior and toughness of 1000 MPa grade high strength low alloy steel
[J]. Acta Metallurgica Sinica, 2014, 50(12): 1413-1420.


[8]王宏颖. Q460D高强钢的回火工艺
[J]. 金属热处理, 2019, 44(11): 185-187.

Wang H Y. Tempering process of Q460D high strength steel
[J]. Heat Treatment of Metals, 2019, 44(11): 185-187.


[9]魏文婷, 王瑞强, 赵天翼, 等. GCr15轴承钢快速回火组织和性能的演变研究
[J]. 热加工工艺, 2023, 52(18): 124-128.

Wei W T, Wang R Q, Zhao T Y, et al. Study on the evolution of organization and properties of GCr15 bearing steel by rapid tempering
[J]. Hot Working Technology, 2023,52(18): 124-128.


[10]Spezzapria M, Forzan M, Dughiero F. Numerical simulation of solid-solid phase transformations during induction hardening process
[J]. IEEE Transactions on Magnetics, 2015, 52(3): 1-4.


[11]Zabett A, Azghandi S H M. Simulation of induction tempering process of carbon steel using finite element method
[J]. Materials and Design, 2012, 36: 415-420.


[12]Baldan M, Stolte M H, Nacke B, et al. Improving the accuracy of FE simulations of induction tempering toward a microstructure-dependent electromagnetic model
[J]. IEEE Transactions on Magnetics, 2020, 56(10): 1-9.


[13]Tong D, Gu J, Yang F. Numerical simulation on induction heat treatment process of a shaft part: Involving induction hardening and tempering
[J]. Journal of Materials Processing Technology, 2018, 262: 277-289.


[14]陆文杰. 30CrMnSiNi2A螺纹件局部感应回火工艺模拟研究
[D]. 南昌: 南昌航空大学, 2017.

Lu W J. Simulation Study of Local Induction Tempering Process for 30CrMnSiNi2A Threaded Parts
[D]. Nanchang: Nanchang Aviation University, 2017.


[15]Hmberg D. A mathematical model for induction hardening including mechanical effects
[J]. Nonlinear Analysis: Real World Applications, 2004, 5(1): 55-90.


[16]Karban P, Donátová M. Continual induction hardening of steel bodies
[J]. Mathematics and Computers in Simulation, 2010, 80(8):1771-1782.


[17]Barglik J, Ducki K, Kukla D, et al. Comparison of single and consecutive dual frequency induction surface hardening of gear wheels
[A]. IOP Conference Series: Materials Science and Engineering
[C]. IOP Publishing, 2018.


[18]Bagliani E P, Santofimia M J, Zhao L, et al. Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel
[J]. Materials Science & Engineering A, 2013, 559(1):486-495.


[19]Liu Q, Qian D, Hua L. Transformation from non-isothermal to isothermal tempering of steel based on isoconversional method
[J]. Journal of Materials Science, 2018, 53: 2774-2784.


[20]Liu Q L, Tian J Y, Wei W T. A model for converting thermal analysis to volume fraction of high carbon bearing steels during low-temperature tempering
[J]. Journal of Materials Science & Technology, 2023, 136: 212-222.


[21]王瑞强.汽车轮毂轴承内圈感应回火温度场数值模拟及实验研究
[D].武汉:武汉理工大学,2022.

Wang R Q. Numerical Simulation and Experimental Study of Induction Tempering Temperature Field of Inner Ring of Automobile Wheel Hub Bearing
[D]. Wuhan: Wuhan University of Technology,2022.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9