[1]Zhao Q, Sun Q, Xin S, et al. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process [J]. Materials Science and Engineering: A, 2022, 845: 143260.
[2]Du Z, Wang C, Liu Q, et al. The superplastic forming/diffusion bonding of TA7 titanium alloy for manufacturing hollow structure with stiffeners [J]. Journal of Manufacturing Processes, 2022, 73: 385-394.
[3]Xun Y W, Tan M J. Applications of superplastic forming and diffusion bonding to hollow engine blades [J]. Journal of Materials Processing Technology, 2000, 99(1-3): 80-85.
[4]Du Z, Jiang S, Zhang K, et al. The structural design and superplastic forming/diffusion bonding of Ti2AlNb based alloy for four-layer structure [J]. Materials & Design, 2016, 104: 242-250.
[5]Li T, Wu H, Wang B, et al. Fatigue crack growth behavior of TA15/TC4 dissimilar laminates fabricated by diffusion bonding [J]. International Journal of Fatigue, 2022, 156: 106646.
[6]Liu R, Wang B, Hu S, et al. Unified modeling of the microstructure and densification of TC4 powder titanium alloy during hot deformation [J]. Journal of Materials Research and Technology, 2023, 24: 4904-4918.
[7]Imran S M, Li C, Lang L, et al. An investigation into Arrhenius type constitutive models to predict complex hot deformation behavior of TC4 alloy having bimodal microstructure [J]. Materials Today Communications, 2022, 31: 103622.
[8]Li C, Sardar Muhammad I, Lang L, et al. Hot deformation behavior and strain compensation constitutive model of equiaxed fine grain diffusion-welded micro-duplex TC4 titanium alloy [J]. Chinese Journal of Aeronautics, 2023, 36(4): 510-522.
[9]Yang X, Wang Y, Dong X, et al. Hot deformation behavior and microstructure evolution of the laser solid formed TC4 titanium alloy [J]. Chinese Journal of Aeronautics, 2021, 34(5): 163-182.
[10]Peng X, Guo H, Shi Z, et al. Study on the hot deformation behavior of TC4-DT alloy with equiaxed α+β starting structure based on processing map [J]. Materials Science and Engineering: A, 2014, 605: 80-88.
[11]Peng H, Li X, Chen X, et al. Effect of grain size on high-temperature stress relaxation behavior of fine-grained TC4 titanium alloy [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(3): 668-677.
[12]Liu H, Wang Q, Zhang J, et al. Effect of multi-pass deformation on hot flow behavior and microstructure evolution mechanism of Ti-6Al-4V alloy fabricated by hot isostatic pressing [J]. Journal of Materials Research and Technology, 2022, 17: 2229-2248.
[13]Wu Z, Wang W, Li X, et al. Microstructure and mechanical properties of Ti-6Al-4V prepared by nickel preplating and electron beam surface remelting [J]. Journal of Materials Processing Technology, 2019, 271: 420-428.
[14]Romero-Resendiz L, Rossi M C, álvarez A, et al. Microstructural, mechanical, electrochemical, and biological studies of an electron beam melted Ti-6Al-4V alloy [J]. Materials Today Communications, 2022, 31: 103337.
[15]王小芳, 陈明和, 陈伟, 等. TC4-DT钛合金不同热变形条件下流变应力 [J]. 南京航空航天大学学报, 2012, 44(S1): 117-120.
Wang X F, Chen M H, Chen W, et al. Flow stress of TC4-DT titanium alloy under different hot deformation conditions [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(S1): 117-120.
[16]Li H, Li Y, Wang X, et al. A comparative study on modified Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel [J]. Materials & Design, 2013, 49: 493-501.
[17]Jiang F, Fei L, Jiang H, et al. Constitutive model research on the hot deformation behavior of Ti6Al4V alloy under wide temperatures [J]. Journal of Materials Research and Technology, 2023, 23: 1062-1074.
[18]周琳,刘运玺,陈玮,等.Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及热加工图 [J].稀有金属,2022,46(1):27-35.
Zhou L, Liu Y X, Chen W, et al. Thermal deformation behavior and processing map of Ti-4Al-5Mo-6Cr-5V-1Nb alloy [J]. Chinese Journal of Rare Metals, 2022, 46(1):27-35.
[19]周璇,王克鲁,鲁世强, 等.加工参数对Ti2041合金热变形行为及组织演变的影响 [J].稀有金属,2022,46(5):554-563.
Zhou X,Wang K L,Lu S Q,et al. Hot deformation behavior and microstructure evolution of Ti2041 alloy with processing parameters [J]. Chinese Journal of Rare Metals, 2022, 46(5): 554-563.
[20]Li Y, Chen H, Du L, et al. Characterization and unified modelling of creep and viscoplasticity deformation of titanium alloy at elevated temperature [J]. International Journal of Plasticity, 2024,173: 103892.
[21]Zheng K, Li D, Chen H, et al. Effect of cooling rate on the phase transformation and post strength of Ti-6Al-4V under hot forming conditions: Experiments and modelling [J]. Journal of Alloys and Compounds, 2024, 972: 172868.
[22]Alabort E, Putman D, Reed R C. Superplasticity in Ti-6Al-4V: Characterisation, modelling and applications [J]. Acta Materialia, 2015, 95: 428-442.
[23]Ma L, Wan M, Li W, et al. Superplastic deformation mechanical behavior and constitutive modelling of a near-α titanium alloy TNW700 sheet [J]. Materials Science and Engineering: A, 2021, 817: 141419.
[24]Chai Z, Wang W Y, Ren Y, et al. Hot deformation behavior and microstructure evolution of TC11 dual-phase titanium alloy [J]. Materials Science and Engineering: A, 2024, 898: 146331.
[25]Zhang S, Zhang H, Liu X, et al. Thermal deformation behavior investigation of Ti-10V-5Al-2.5Fe-0.1B titanium alloy based on phenomenological constitutive models and a machine learning method [J]. Journal of Materials Research and Technology, 2024, 29: 589-608.
[26]Alabort E, Kontis P, Barba D, et al. On the mechanisms of superplasticity in Ti-6Al-4V [J]. Acta Materialia, 2016, 105: 449-463.
[27]赵杰. TA15钛合金板材高温变形行为及变速率热态气压成形研究 [D]. 哈尔滨:哈尔滨工业大学, 2020.
Zhao J. Research on Hot Deformation Behavior and Variable-rate Hot Gas Forming of TA15 Titanium Alloy Sheet [D]. Harbin:Harbin Institute of Technology, 2020.
[28]Wu Y, Wang D, Liu Z, et al. A unified internal state variable material model for Ti2AlNb-alloy and its applications in hot gas forming [J]. International Journal of Mechanical Sciences, 2019, 164: 105126.
[29]Cheong B H, Lin J, Ball A A. Modelling of hardening due to grain growth for a superplastic alloy [J]. Journal of Materials Processing Technology, 2001, 119(1): 361-365.
[30]Bai Q, Lin J, Dean T A, et al. Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions [J]. Materials Science and Engineering: A, 2013, 559: 352-358.
[31]Estrin Y. Dislocation theory based constitutive modelling: Foundations and applications [J]. Journal of Materials Processing Technology, 1998, 80-81: 33-39.
[32]Mecking H, Kocks U F. Kinetics of flow and strain-hardening [J]. Acta Metallurgica, 1981, 29(11): 1865-1875.
[33]Zhao L, Yasmeen T, Gao P, et al. Mechanism-based constitutive equations for superplastic forming of TA15 with equiaxed fine grain structure [J]. Procedia Engineering, 2017, 207: 1874-1879.
[34]Yang L, Wang B, Liu G, et al. Behavior and modeling of flow softening and ductile damage evolution in hot forming of TA15 alloy sheets [J]. Materials & Design, 2015, 85: 135-148.
[35]Cao J, Lin J. A study on formulation of objective functions for determining material models [J]. International Journal of Mechanical Sciences, 2008, 50(2): 193-204.
|