[1]肖路. 航天构件低压铸造与热成形工艺参数优化[D]. 成都:电子科技大学, 2024.
Xiao L. Optimization of Low Pressure Casting and Hot Forming Process Parameters for Aerospace Components[D]. Chengdu: University of Electronic Science and Technology of China, 2024.
[2]彭宇升. 航空锻造数字化质量管理关键技术研究[D]. 北京:中国机械科学研究总院集团有限公司, 2023.
Peng Y S. Research on Key Technologies of Aviation Forging Digital Quality Management[D]. Beijing:China Academy of Machinery Science and Technology Group Co., Ltd., 2023.
[3]刘君,邹朝江,张立红,等.航空精密环锻件柔性绿色自动化制造生产线探索[J].锻造与冲压, 2024(9):30,32,34,36.
Liu J, Zou C J, Zhang L H, et al. Automatic, flexible and green manufacturing lines for precision ring forging for aviation industry[J]. Forging & Metalforming,2024 (9):30,32,34,36.
[4]凌云汉. 锻造铝合金车轮单件全流程质量追溯系统关键技术研究[D]. 北京:中国机械科学研究总院集团有限公司, 2019.
Ling Y H. Research on the Technology of the Whole Process Quality Traceability System for Single Forging Aluminum Alloy Wheel[D]. Beijing:China Academy of Machinery Science and Technology Group Co., Ltd., 2019.
[5]张莹莹. A航空工业企业数字化提升质量管理的方案研究[D]. 北京:商务部国际贸易经济合作研究院, 2024.
Zhang Y Y. Research on Digital Improvement of Quality Management in a Aviation Industry Enterprise[D]. Beijing:Chinese Academy of International Trade and Economic Cooperation, 2024.
[6]朱江凯. 航空装备质量问题知识分析系统设计与实现[D]. 大连:大连理工大学, 2023.
Zhu J K. Design and Implementation of Knowledge Analysis System for Aviation Equipment Quality Problems[D]. Dalian: Dalian University of Technology, 2023.
[7]王永鹏, 徐伟, 石晓飞, 等. 基于数字化环境的航空机载壳体快速工艺设计方法研究[J]. 新技术新工艺, 2020(11): 16-21.
Wang Y P, Xu W, Shi X F, et al. Research on rapid process design method of aerospace shell based on digital environment [J]. New Technology & New Process, 2020(11): 16-21.
[8]杨兴旺. 某飞机7055铝合金轮毂锻造成形工艺模拟优化及性能验证[D]. 镇江: 江苏大学, 2023.
Yang X W.Simulation Optimization and Performance Verification of Forging Process of Aircraft Hub of 7055 Aluminum Alloy[D].Zhenjiang:Jiangsu University, 2023.
[9]樊璐璐,范鑫,李安迪,等.基于专利大数据分析方法的锻压领域热点技术挖掘[J].锻压技术, 2023, 48(7):7-12.
Fan L L, Fan X, Li A D, et al. Hotspot technology mining in forging field based on patent big data analysis method [J]. Forging & Stamping Technology, 2023, 48(7):7-12.
[10]黄文恺, 梁智洪, 王明华, 等. 数字孪生在航空航天结构设计、制造和运维中的应用与展望[J]. 图学学报, 2024, 45(2): 241-249.
Huang W K, Liang Z H, Wang M H, et al. Application and prospect of digital twin in the design, manufacturing, and operation of aerospace structures[J]. Journal of Graphics, 2024, 45(2): 241-249.
[11]孟利军, 杨娇妮, 苟曼曼.热处理工艺对TC4钛合金组织及性能的影响[J].中国金属通报, 2021(2): 101-102.
Meng L J, Yang J N, Gou M M. Influence of heat treatment process on the organization and properties of TC4 titanium alloy[J]. China Metal Bulletin, 2021(2): 101-102.
[12]刘洪秀, 于兴福, 魏英华, 等. 航空轴承钢的发展及热处理技术[J]. 航空制造技术, 2020, 63(Z1): 94-101.
Liu H X, Yu X F, Wei Y H, et al. Development of aviation bearing steel and heat treatment technology[J]. Aeronautical Manufacturing Technology, 2020, 63(Z1): 94-101.
[13]孙振亚. 热处理与锻造工艺对H13热作模具钢组织与性能的影响[D]. 济南: 山东大学, 2019.
Sun Z Y. Influence of Heat Treatment and Forging Process on Microstructure and Properties of H13 Hot-working Die Steel[D]. Jinan:Shandong University, 2019.
[14]李江. 齿轮渗碳淬火热处理的多物理场耦合及性能预测[D]. 徐州: 中国矿业大学, 2024.
Li J. Multi-physical Field Coupling and Performance Prediction of Gear Carburizing and Quenching Heat Treatment China[D]. Xuzhou:University of Mining and Technology, 2024.
[15]李孝晨. 基于机器学习的RAFM钢与低活化高熵合金优化设计及其力学性能评价[D]. 合肥: 中国科学技术大学, 2023.
Li X C. Optimization Design and Mechanical Properties Evaluation of RAFM Steels and Low-activation High Entropy Alloys Based on Machine Learning[D]. Hefei:University of Science and Technology of China, 2023.
[16]樊大为. 热处理数字化管控系统数据分析平台的设计与实现[D]. 沈阳:中国科学院大学(中国科学院沈阳计算技术研究所), 2023.
Fan D W. Design and Implementation of Data Analysis Platform for Digital Control System of Heat Treatment[D]. Shenyang:University of Chinese Academy of Sciences (Shenyang Institute Computing Technology Chinese Academy of Sciences), 2023.
|