网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于虚拟标识的热加工过程单件质量数据追溯技术
英文标题:Single-piece quality data traceability technology on hot working process based on virtual identification
作者:曹圣泉1 孙勇2 
单位:1.宝武特种冶金有限公司 2.中国机械总院集团北京机电研究所有限公司 
关键词:锻件在热加工过程由于温度较高、变形量较大 难以应用射频识别、表面标识等传统方法进行识别 从而导致单件锻件标识号与锻件工艺过程数据、质量数据难以准确对应与追溯。针对上述问题 通过构建生产要素的编码系统 为单件锻件赋予唯一的虚拟标识 并结合生产工艺时序流程将生产链中各个环节的质量数据进行梳理与关联 构建了以虚拟标识为主键的全流程质量数据模型 形成以虚拟标识为追溯介质的单件质量数据全流程追溯技术。基于该技术构建了单件追溯系统 实现了单件锻件工艺过程和质量数据的实时跟踪和分析决策 最后 探讨了这一创新方法对降低人工误差、提高生产透明度、以及对锻造行业精益生产的推动作用。 
分类号:TP273
出版年,卷(期):页码:2024,49(8):29-37
摘要:

 锻件在热加工过程由于温度较高、变形量较大,难以应用射频识别、表面标识等传统方法进行识别,从而导致单件锻件标识号与锻件工艺过程数据、质量数据难以准确对应与追溯。针对上述问题,通过构建生产要素的编码系统,为单件锻件赋予唯一的虚拟标识,并结合生产工艺时序流程将生产链中各个环节的质量数据进行梳理与关联,构建了以虚拟标识为主键的全流程质量数据模型,形成以虚拟标识为追溯介质的单件质量数据全流程追溯技术。基于该技术构建了单件追溯系统,实现了单件锻件工艺过程和质量数据的实时跟踪和分析决策,最后,探讨了这一创新方法对降低人工误差、提高生产透明度、以及对锻造行业精益生产的推动作用。

 Due to the higher temperature and larger deformation during the hot working process of forgings, it is difficult to use the traditional methods such as radio frequency identification(RFID) and surface identification for identification, resulting in inaccurate correspondence and traceability of the identification numbers of individual forgings with the process and quality data of forgings. Therefore, for the above problems, the unique virtual identifiers to individual forgings was assigned by constructing a coding system for production factors, and combining with the time sequence flow of the production process, the quality data of each link in the production chain were sorted and correlated. Then, a whole-process quality data model with the virtual identification as the primary key was constructed, forming the whole-process traceability technology of individual quality data with virtual identification as the traceability medium. Based on this technology, the individual traceability system was constructed, realizing real-time tracking and analyzing decision-making of the process and quality data for the individual forgings. Finally, the promotion effect was explored for reducing manual errors, improving production transparency and promoting lean production in the forging industry.

基金项目:
作者简介:
作者简介:曹圣泉(1975-),男,博士,高级工程师 E-mail:caoshengquan@baosteel.com
参考文献:

 [1]肖路. 航天构件低压铸造与热成形工艺参数优化[D]. 成都:电子科技大学, 2024.


Xiao L. Optimization of Low Pressure Casting and Hot Forming Process Parameters for Aerospace Components[D]. Chengdu: University of Electronic Science and Technology of China, 2024.


[2]彭宇升. 航空锻造数字化质量管理关键技术研究[D]. 北京:中国机械科学研究总院集团有限公司, 2023.


Peng Y S. Research on Key Technologies of Aviation Forging Digital Quality Management[D]. BeijingChina Academy of Machinery Science and Technology Group Co., Ltd., 2023.


[3]刘君,邹朝江,张立红,.航空精密环锻件柔性绿色自动化制造生产线探索[J].锻造与冲压, 2024(9):30,32,34,36.


Liu J, Zou C J, Zhang L H, et al. Automatic, flexible and green manufacturing lines for precision ring forging for aviation industry[J]. Forging & Metalforming,2024 (9):30,32,34,36.


[4]凌云汉. 锻造铝合金车轮单件全流程质量追溯系统关键技术研究[D]. 北京:中国机械科学研究总院集团有限公司, 2019.


Ling Y H. Research on the Technology of the Whole Process Quality Traceability System for Single Forging Aluminum Alloy Wheel[D]. BeijingChina Academy of Machinery Science and Technology Group Co., Ltd., 2019.


[5]张莹莹. A航空工业企业数字化提升质量管理的方案研究[D]. 北京:商务部国际贸易经济合作研究院, 2024.


Zhang Y Y. Research on Digital Improvement of Quality Management in a Aviation Industry Enterprise[D]. BeijingChinese Academy of International Trade and Economic Cooperation, 2024.


[6]朱江凯. 航空装备质量问题知识分析系统设计与实现[D]. 大连:大连理工大学, 2023.


Zhu J K. Design and Implementation of Knowledge Analysis System for Aviation Equipment Quality Problems[D]. Dalian: Dalian University of Technology, 2023.


[7]王永鹏, 徐伟, 石晓飞, . 基于数字化环境的航空机载壳体快速工艺设计方法研究[J]. 新技术新工艺, 2020(11): 16-21.


Wang Y P, Xu W, Shi X F, et al. Research on rapid process design method of aerospace shell based on digital environment [J]. New Technology & New Process, 2020(11): 16-21.


[8]杨兴旺. 某飞机7055铝合金轮毂锻造成形工艺模拟优化及性能验证[D]. 镇江: 江苏大学, 2023.


Yang X W.Simulation Optimization and Performance Verification of Forging Process of Aircraft Hub of 7055 Aluminum Alloy[D].ZhenjiangJiangsu University, 2023.


[9]樊璐璐,范鑫,李安迪,.基于专利大数据分析方法的锻压领域热点技术挖掘[J].锻压技术, 2023, 48(7):7-12.


Fan L L, Fan X, Li A D, et al. Hotspot technology mining in forging field based on patent big data analysis method [J]. Forging & Stamping Technology, 2023, 48(7):7-12.


[10]黄文恺, 梁智洪, 王明华, . 数字孪生在航空航天结构设计、制造和运维中的应用与展望[J]. 图学学报, 2024, 45(2): 241-249.


Huang W K, Liang Z H, Wang M H, et al. Application and prospect of digital twin in the design, manufacturing, and operation of aerospace structures[J]. Journal of Graphics, 2024, 45(2): 241-249.


[11]孟利军, 杨娇妮, 苟曼曼.热处理工艺对TC4钛合金组织及性能的影响[J].中国金属通报, 2021(2): 101-102.


Meng L J, Yang J N, Gou M M. Influence of heat treatment process on the organization and properties of TC4 titanium alloy[J]. China Metal Bulletin, 2021(2): 101-102.


[12]刘洪秀, 于兴福, 魏英华, . 航空轴承钢的发展及热处理技术[J]. 航空制造技术, 2020, 63(Z1): 94-101.


Liu H X, Yu X F, Wei Y H, et al. Development of aviation bearing steel and heat treatment technology[J]. Aeronautical Manufacturing Technology, 2020, 63(Z1): 94-101.


[13]孙振亚. 热处理与锻造工艺对H13热作模具钢组织与性能的影响[D]. 济南: 山东大学, 2019.


Sun Z Y. Influence of Heat Treatment and Forging Process on Microstructure and Properties of H13 Hot-working Die Steel[D]. JinanShandong University, 2019.


[14]李江. 齿轮渗碳淬火热处理的多物理场耦合及性能预测[D]. 徐州: 中国矿业大学, 2024.


Li J. Multi-physical Field Coupling and Performance Prediction of Gear Carburizing and Quenching Heat Treatment China[D]. XuzhouUniversity of Mining and Technology, 2024.


[15]李孝晨. 基于机器学习的RAFM钢与低活化高熵合金优化设计及其力学性能评价[D]. 合肥: 中国科学技术大学, 2023.


Li X C. Optimization Design and Mechanical Properties Evaluation of RAFM Steels and Low-activation High Entropy Alloys Based on Machine Learning[D]. HefeiUniversity of Science and Technology of China, 2023.


[16]樊大为. 热处理数字化管控系统数据分析平台的设计与实现[D]. 沈阳:中国科学院大学(中国科学院沈阳计算技术研究所), 2023.


Fan D W. Design and Implementation of Data Analysis Platform for Digital Control System of Heat Treatment[D]. ShenyangUniversity of Chinese Academy of Sciences (Shenyang Institute Computing Technology Chinese Academy of Sciences), 2023.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9