网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Ti60钛合金超塑变形行为及本构模型
英文标题:Superplastic deformation behavior and constitutive model on Ti60 titanium alloy
作者:廖子颖1 李保永1 刘伟1 秦中环1 吴迪鹏2 武永2 
单位:1.北京航星机器制造有限公司 2.南京航空航天大学 机电学院 
关键词:Ti60钛合金 高温钛合金 超塑性 本构模型 Arrenhius方程 
分类号:TG131
出版年,卷(期):页码:2024,49(8):249-254
摘要:

 为确定Ti60钛合金的超塑变形行为,促进Ti60钛合金工程化应用,进行了Ti60钛合金在变形温度为880~960 ℃和应变速率为0.0001~0.01 s-1条件下的超塑拉伸试验。结果表明:Ti60钛合金在960 ℃、0.001 s-1条件下的伸长率达到最大值,为365%;在较低应变速率(0.0010.0001 s-1)条件下,材料呈现明显的应变硬化,在较低变形温度(880 ℃)、较高应变速率(0.01 s-1)条件下,材料出现应力软化;当变形温度一定时,随着应变速率的降低,峰值应力降低。基于Arrhenius方程构建了本构模型,并提出不区分流动应力水平直接求解Arrhenius方程的方法,引入应变变化修正Arrhenius方程。修正Arrhenius方程的理论计算值与试验值的相关系数R0.9914,平均相对误差为6.62%,计算结果与试验结果误差在可接受范围内,为采用Ti60钛合金进行复杂构件超塑成形提供数据支撑。

 To determine the superplastic deformation behavior of Ti60 titanium alloy and promote its engineering application, superplastic tensile tests were conducted on Ti60 titanium alloy at the deformation temperatures of 880-960 and the strain rates of 0.0001-0.01 s-1. The results show that the elongation of Ti60 titanium alloy reaches its maximum value in the condition of 960 and 0.001 s-1, which is 365%. At lower strain rates (0.001 and 0.0001 s-1), the material exhibits significant strain hardening, while at lower deformation temperature(880 ) and higher strain rate (0.01 s-1), the material exhibits stress softening. When the deformation temperature is constant, the peak stress decreases with the decreasing of strain rate. Based on the Arrhenius equation, a constitutive model is constructed, and a method for directly solving the Arrhenius equation without distinguishing the flow stress level is proposed. The strain change is introduced to modify the Arrhenius equation. The correlation coefficient R between the theoretical calculation value of the modified Arrhenius equation and the test value is 0.9914, with an average relative error of 6.62%. The error between the calculated and test results is within an acceptable range, which provides the data support for the use of Ti60 titanium alloy in complex component superplastic forming.

基金项目:
国家重点研发计划资助项目(2023YFB3407000);国防基础科研计划(JCKY2021204A004)
作者简介:
作者简介:廖子颖(1998-),男,硕士研究生 E-mail:1821946291@qq.com 通信作者:李保永(1984-),男,博士,正高级工程师 E-mail:libaoyonght239@163.com
参考文献:

 [1]朱培亮, 辛社伟, 毛小南, . 高温钛合金的热稳定性研究进展[J]. 钛工业进展, 2023, 40(1): 42-48.


Zhu P L, Xin S W, Mao X N, et al. Research progress on thermal stability of high temperature titanium alloys[J]. Titanium Industry Progress, 2023, 40(1): 42-48.


[2]叶玉刚, 信灿尧. Ti60钛合金热变形行为与应变补偿型本构模型[J]. 精密成形工程, 2024, 16(2): 87-95.


Ye Y G, Xin C Y. Deformation behavior and constitutive model by using strain compensation of Ti60 alloy at elevated temperature[J]. Journal of Netshape Forming Engineering, 2024, 16(2): 87-95.


[3]Li P, Yu R H, Yan S L, et al. Study on deformation behavior of Ti60 alloy based on multi-physics coupling[J]. Materials Today Communications, 2024, 38: 107931.


[4]Wang B N, Zeng W D, Zhao Z B, et al. Effect of micro-texture and orientation incompatibility on the mechanical properties of Ti60 alloy[J]. Materials Science and Engineering: A, 2023, 881: 145419.


[5]夏春林, 叶俊青, 黎汝栋, . Ti60钛合金整体叶盘用锻坯的改进[J]. 锻压技术, 2022, 47(5): 65-72.


Xia C L, Ye J Q, Li R D, et al. Improvement of forging billet for Ti60 titanium alloy blisk [J]. Forging & Stamping Technology, 2022, 47(5): 65-72.


[6]Sai P A, Mihir O, Kolla L R, et al. A review on superplastic forming of Ti-6Al-4V and other titanium alloys[J]. Materials Today Communications, 2023, 34: 105343.


[7]Wang B N, Zeng W D, Zhao Z B, et al. Effect of micro-texture and orientation incompatibility on the mechanical properties of Ti60 alloy[J]. Materials Science and Engineering: A, 2023, 881: 145419.


[8]尹宝琴, 徐帅, 肖纳敏, . Ti60近α钛合金的热变形行为和组织演化[J]. 塑性工程学报, 2022, 29(8): 193-202.


Yin B Q, Xu S, Xiao N M, et al. Thermal deformation behavior and microstructure evolution of near α Ti60 titanium alloy[J]. Journal of Plasticity Engineering, 2022, 29(8): 193-202.


[9]周丽娜, 付明杰, 李晓华, . TA32高温钛合金超塑性能研究[J]. 航空制造技术, 2023, 66(5): 86-90.


Zhou L N, Fu M J, Li X H, et al. Superplastic behavior of TA32 high temperature titanium alloy[J]. Aeronautical Manufacturing Technology, 2023, 66(5): 86-90.


[10]吴迪鹏, 武永, 陈明和, . TC31钛合金板材高温流变行为及组织演变研究[J]. 稀有金属材料与工程, 2019, 48(12): 3901-3909.


Wu D P, Wu Y, Chen M H, et al. High temperature flow behavior and microstructure evolution of TC31 titanium alloy sheets[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3901-3909.


[11]Mosleha A O, Mikhaylovskava A V, Kotov A D, et al. Experimental, modelling and simulation of an approach for optimizing the superplastic forming of Ti-6Al-4V titanium alloy[J]. Journal of Manufacturing Processes, 2019, 45:262-272.


[12]周凌华, 沈中伟, 许涛. Ti-55钛合金双层板的超塑成形/扩散连接数值模拟及工艺试验[J]. 锻压技术, 2022, 47(8): 76-82.


Zhou L H, Shen Z W, Xu T. Numerical simulation and process test on superplastic forming/diffusion bonding for Ti-55 titanium alloy double-layer plate[J]. Forging & Stamping Technology, 2022, 47(8): 76-82.


[13]吴诗惇. 金属超塑性变形理论[M]. 北京: 国防工业出版社, 1997.


Wu S D. Theories of Superplasticity of Metals[M]. Beijing:National Defense Industry Press, 1997.


[14]李志强. 钛合金超塑成形/扩散连接技术及应用[M]. 北京: 国防工业出版社, 2022.


Li Z Q. Superplastic Forming/Diffusion Bonding Technology of Titanium Alloys: Theories and Applications[M]. Beijing: National Defense Industry Press, 2022.


[15]屈雅倩, 郭鸿镇, 姚泽坤, . Ti60高温钛合金的超塑性拉伸行为及组织演变[J]. 热加工工艺, 2014, 43(14): 50-52,55.


Qu Y Q, Guo H Z, Yao Z K, et al. Superplastic behaviour and microstructure evolution of Ti60 alloy[J]. Hot Working Technology, 2014, 43(14): 50-52,55.


[16]Hajari A, Morakabati M, Abbasi S M, et al. Constitutive modeling for high-temperature flow behavior of Ti-6242S alloy[J]. Materials Science & Engineering A, 2017, 681: 103-113.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9