[1]朱培亮, 辛社伟, 毛小南, 等. 高温钛合金的热稳定性研究进展[J]. 钛工业进展, 2023, 40(1): 42-48.
Zhu P L, Xin S W, Mao X N, et al. Research progress on thermal stability of high temperature titanium alloys[J]. Titanium Industry Progress, 2023, 40(1): 42-48.
[2]叶玉刚, 信灿尧. Ti60钛合金热变形行为与应变补偿型本构模型[J]. 精密成形工程, 2024, 16(2): 87-95.
Ye Y G, Xin C Y. Deformation behavior and constitutive model by using strain compensation of Ti60 alloy at elevated temperature[J]. Journal of Netshape Forming Engineering, 2024, 16(2): 87-95.
[3]Li P, Yu R H, Yan S L, et al. Study on deformation behavior of Ti60 alloy based on multi-physics coupling[J]. Materials Today Communications, 2024, 38: 107931.
[4]Wang B N, Zeng W D, Zhao Z B, et al. Effect of micro-texture and orientation incompatibility on the mechanical properties of Ti60 alloy[J]. Materials Science and Engineering: A, 2023, 881: 145419.
[5]夏春林, 叶俊青, 黎汝栋, 等. Ti60钛合金整体叶盘用锻坯的改进[J]. 锻压技术, 2022, 47(5): 65-72.
Xia C L, Ye J Q, Li R D, et al. Improvement of forging billet for Ti60 titanium alloy blisk [J]. Forging & Stamping Technology, 2022, 47(5): 65-72.
[6]Sai P A, Mihir O, Kolla L R, et al. A review on superplastic forming of Ti-6Al-4V and other titanium alloys[J]. Materials Today Communications, 2023, 34: 105343.
[7]Wang B N, Zeng W D, Zhao Z B, et al. Effect of micro-texture and orientation incompatibility on the mechanical properties of Ti60 alloy[J]. Materials Science and Engineering: A, 2023, 881: 145419.
[8]尹宝琴, 徐帅, 肖纳敏, 等. Ti60近α钛合金的热变形行为和组织演化[J]. 塑性工程学报, 2022, 29(8): 193-202.
Yin B Q, Xu S, Xiao N M, et al. Thermal deformation behavior and microstructure evolution of near α Ti60 titanium alloy[J]. Journal of Plasticity Engineering, 2022, 29(8): 193-202.
[9]周丽娜, 付明杰, 李晓华, 等. TA32高温钛合金超塑性能研究[J]. 航空制造技术, 2023, 66(5): 86-90.
Zhou L N, Fu M J, Li X H, et al. Superplastic behavior of TA32 high temperature titanium alloy[J]. Aeronautical Manufacturing Technology, 2023, 66(5): 86-90.
[10]吴迪鹏, 武永, 陈明和, 等. TC31钛合金板材高温流变行为及组织演变研究[J]. 稀有金属材料与工程, 2019, 48(12): 3901-3909.
Wu D P, Wu Y, Chen M H, et al. High temperature flow behavior and microstructure evolution of TC31 titanium alloy sheets[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3901-3909.
[11]Mosleha A O, Mikhaylovskava A V, Kotov A D, et al. Experimental, modelling and simulation of an approach for optimizing the superplastic forming of Ti-6Al-4V titanium alloy[J]. Journal of Manufacturing Processes, 2019, 45:262-272.
[12]周凌华, 沈中伟, 许涛. Ti-55钛合金双层板的超塑成形/扩散连接数值模拟及工艺试验[J]. 锻压技术, 2022, 47(8): 76-82.
Zhou L H, Shen Z W, Xu T. Numerical simulation and process test on superplastic forming/diffusion bonding for Ti-55 titanium alloy double-layer plate[J]. Forging & Stamping Technology, 2022, 47(8): 76-82.
[13]吴诗惇. 金属超塑性变形理论[M]. 北京: 国防工业出版社, 1997.
Wu S D. Theories of Superplasticity of Metals[M]. Beijing:National Defense Industry Press, 1997.
[14]李志强. 钛合金超塑成形/扩散连接技术及应用[M]. 北京: 国防工业出版社, 2022.
Li Z Q. Superplastic Forming/Diffusion Bonding Technology of Titanium Alloys: Theories and Applications[M]. Beijing: National Defense Industry Press, 2022.
[15]屈雅倩, 郭鸿镇, 姚泽坤, 等. Ti60高温钛合金的超塑性拉伸行为及组织演变[J]. 热加工工艺, 2014, 43(14): 50-52,55.
Qu Y Q, Guo H Z, Yao Z K, et al. Superplastic behaviour and microstructure evolution of Ti60 alloy[J]. Hot Working Technology, 2014, 43(14): 50-52,55.
[16]Hajari A, Morakabati M, Abbasi S M, et al. Constitutive modeling for high-temperature flow behavior of Ti-6242S alloy[J]. Materials Science & Engineering A, 2017, 681: 103-113.
|