网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
残余应力对SAE9310钢航空齿轮弯曲疲劳寿命的影响
英文标题:Influence of residual stress on bending fatigue life for SAE9310 steel aviation gears
作者:关荣鑫1 职彦锋1 王东飞1 王晓鹏1 2 
单位:1.郑州机械研究所有限公司 2.郑州航空工业管理学院 机械工程学院 
关键词:航空齿轮 弯曲疲劳寿命 硬度梯度 残余应力 疲劳裂纹 
分类号:TG162
出版年,卷(期):页码:2024,49(8):255-262
摘要:

 为提升航空齿轮弯曲疲劳性能,通过渗碳热处理等强化措施引入残余压应力是关键工艺技术。为揭示齿轮渗碳热处理性能梯度对弯曲疲劳的影响,运用测试技术和寿命统计方法,针对SAE9310钢航空齿轮在单齿脉冲弯曲疲劳试验中的疲劳寿命进行分析,研究渗碳热处理后齿轮的硬度梯度、表面残余应力对其弯曲疲劳寿命的影响。结果表明,残余应力增益量较大的齿轮的弯曲疲劳寿命明显增加,且近表层硬度梯度增长速率较大,易导致硬度峰值前端硬点分布,造成裂纹路径非平滑扩展。齿面残余应力的预测疲劳寿命与试验结果一致,验证了齿面残余压应力是影响弯曲疲劳寿命的主要因素,为航空齿轮的设计和制造提供了重要的理论依据和实践指导。

 To enhance the bending fatigue performance of aviation gear, introducing the residual compressive stress through strengthening measures such as carburizing heat treatment is the key process technology. Therefore, in order to reveal the influence of the gradient of gear carburizing heat treatment performance on bending fatigue, the fatigue life of SAE9310 steel aviation gears in single-tooth impulse bending fatigue test was analyzed by using the test techniques and the method of life statistics, and the influences of hardness gradient and surface residual stress on the bending fatigue life of gears after carburizing heat treatment were investigated. The results show that the bending fatigue life of gears with larger residual stress increment is significantly increased, and the near-surface hardness gradient growth rate is higher, which can easily lead to the distribution of hard points at the front end of hardness peak, resulting in non-smooth propagation of crack point. The predicted fatigue life considering the residual stress on the tooth surface is consistent with the test results, verifying that the residual compressive stress on the tooth surface is the main factor affecting the bending fatigue life, and providing important theoretical basis and practical guidance for the design and manufacture of aviation gears.

基金项目:
河南省科技攻关项目 (222102220110)
作者简介:
作者简介:关荣鑫(1984-), 男, 硕士,高级工程师 E-mail:guanrongxin@163.com 通信作者:职彦锋(1985-),男,学士,高级工程师 E-mail:zhisir@qq.com
参考文献:

 [1]樊毅啬.齿轮弯曲疲劳强度影响因素分析及试验研究[D].重庆: 重庆大学, 2014.


Fan Y Q. The Analysis and Experimental Research of Gear Bending Fatigue Strength Influence Factors[D]. Chongqing: Chongqing University, 2014.


[2]朱孝录. 齿轮内在品质对齿轮强度和寿命的影响[J]. 机械传动, 2021, 45(9): 112-118.


Zhu X L. Influence of internal quality of gear on strength and life of gear[J]. Journal of Mechanical Transmission, 2021, 45(9): 112-118.


[3]Zou T, Shaker M, Angeles J, et al. An innovative tooth root profile for spur gears and its effect on service life[J]. Meccanica, 2017, 52(8):1825-1841.


[4]Savaria V, Bridier F, Bocher P. Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears[J]. International Journal of Fatigue, 2016, 85:70-84.


[5]李飞,张华煜,陈慧琴. Mn18Cr18N钢室温拉压循环加载力学行为和微观组织演变机理[J].锻压技术,2023488:231-237.


Li F, Zhang H YChen H Q. Mechanical behavior and microstructure evolution mechanism on Mn18Cr18N steel under tension-compression cycle loading at room temperature[J]. Forging & Stamping Technology, 2023, 48(8)231-237.


[6]万荣春,付立铭,王学双,等. 1000 MPa级别超高强钢延迟开裂机理的研究[J].锻压技术,2023488):238-242.


Wang R C, Fu L M, Wang X S, et al. Study on delayed cracking mechanism for ultra-high strength steel of 1000 MPa grade[J]. Forging & Stamping Technology202348(8)238-242.


[7]Wang W, Liu H J, Zhu C C, et al. Effect of the residual stress on contact fatigue of a wind turbine carburized gear with multiaxial fatigue criteria[J]. International Journal of Mechanical Sciences, 2018, 151:263-273.


[8]He H F, Liu H J, Zhu C C, et al. Study on the gear fatigue behavior considering the effect of residual stress based on the continuous damage approach[J]. Engineering Failure Analysis, 2019, 104: 531-544.


[9]Li Z C, Freborg A M, Hansen B D, et al. Modeling the effect of carburization and quenching on the development of residual stresses and bending fatigue resistance of steel gears[J]. Journal of Materials Engineering & Performance, 2013, 22(3): 664-672.


[10]Shaw B. The role of residual stress on the fatigue strength of high performance gearing[J]. International Journal of Fatigue, 2003, 25(9-11): 1279-1283.


[11]Shiozawa K, Murai M, Shimatani Y, et al. Transition of fatigue failure mode of Ni-Cr-Mo low-alloy steel in very high cycle regime[J]. International Journal of Fatigue, 2009, 32: 541-550.[12]Sakurada T, Kobayashi M. Effects of shot peening and grinding on gear strength[A]. SAE Conference[C]. Detroit:1994.


[13]Ogawa K, Yamada H, Saruki K, et al. Influence of residual stress on fatigue of carburized and shot peened notched specimens[A]. Proceedings of the Fourth International Conference on Shot Peening[C].Tokyo: 1990.


[14]董明振,闫永明,欧阳雪枚,. 17Cr2Ni2MoVNb20Cr2Ni4A齿轮钢的热变形行为[J]. 锻压技术, 2022, 47(9): 230-237.


Dong M Z, Yan Y M, Ouyang X M, et al. Thermal deformation behavior of 17Cr2Ni2MoVNb and 20Cr2Ni4A gear steels[J]. Forging & Stamping Technology, 2022, 47(9): 230-237.


[15]郑医, 何培刚, 李宁, . 航空渗碳齿轮钢的迭代发展[J]. 航空材料学报, 2023, 43(1):60-69.


Zheng Y, He P G, Li N, et al. Material iterative development of aero carburizing gear steels[J]. Journal of Aeronautical Materials, 2023, 43(1):60-69.


[16]GB/T 142302021,齿轮弯曲疲劳强度试验方法[S].


GB/T 142302021Test method of tooth bending strength for gear load capacity [S].


[17]GB/T 3480.32021, 直齿轮和斜齿轮承载能力计算第3部分:轮齿弯曲强度计算[S].


GB/T 3480.32021, Calculation of load capacity of spur and helical gearsPart 3: Calculation of tooth bending strength [S].


[18]熊显文,涂家海,明兴祖.齿轮齿根过渡圆角的计算方法及控制的研究[J].机械传动, 2008, 32(3):9-14.


Xiong X W, Tu J H, Ming X Z. Research on calculation method and control of tooth root fillet[J]. Journal of Mechanical Transmission, 2008, 32(3):9-14.


[19]Tseng S C, Chao C K, Li D X, et al. Experimental and simulation analysis of the evolution of residual stress due to expansion via CMAS infiltration in thermal barrier coatings[J]. Journal of Coatings, 2021, 11(10): 1148-1161.


[20]Chen G M. Review on physical metallurgical factors of surface hardening heat treatment for gears[J]. Journal of Heat Treatment of Metals, 2015, 40(8): 1-12.


[21]何海风, 刘怀举, 朱才朝,. 残余应力对齿轮弯曲疲劳的量化影响研究[J].机械工程学报,2023,59 (4): 53-60.


He H F, Liu H J, Zhu C C, et al. Quantitative effect of residual stress on gear bending fatigue[J], Journal of Mechanical Engineering, 2023, 59(4): 53-60.


[22]Chen J W, Salvati E, Uzun F, et al. An experimental and numerical analysis of residual stresses in a TIG weldment of a single crystal nickel-base superalloy[J]. Journal of Manufacturing, 2020, 53(2): 190-200.


[23]Tobe T, Kato M, Inoue K, et al. Bending strength of carburized SCM420H spur gear teeth[J]. Bulletin of JSME, 1986, 29(247): 273-280.


[24]Basquin O. The exponential law of endurance test[J]. American Society for Testing and Material, 1910(10): 625-630.


[25]Coffin L. Study of the effect of cyclic thermal stresses on a ductile metal[J]. Transactions of the ASME, 1954, 76: 931-950.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9