[1]张宇,陈思思,刘铭赫,等. 扁线电机交流铜耗抑制研究[J]. 电机技术,2023(4):29-32,64.
Zhang Y, Chen S S, Liu M H, et al. Research on AC copper loss suppression of flat wire motors[J]. Electric Machine Technology, 2023(4): 29-32,64.
[2]宋宝韫,樊志新,刘元文,等. 应用连续挤压技术生产铜扁线[J]. 电线电缆,2001(1):17-18.
Song B Y, Fan Z X, Liu Y W, et al. Copper strip produced by continuous extrusion[J]. Wire & Cable, 2001(1): 17-18.
[3]谢建新,刘静安. 金属挤压理论与技术[M]. 北京:冶金工业出版社,2001.
Xie J X, Liu J A. Theory and Technology of Metal Extrusion[M]. Beijing:Metallurgical Industry Press, 2001.
[4]童金林. 铜及铜合金连续挤压技术的研究和应用[J]. 世界有色金属,2019(21):156-157.
Tong J L. Research and application of continuous extrusion technology of copper and copper alloys[J]. World Nonferrous Metals, 2019(21): 156-157.
[5]刘元文,宋宝韫,樊志新,等. 铜扁线连续挤压工艺[J]. 锻压机械,2002(5):31-32.
Liu Y W, Song B Y, Fan Z X, et al. Continuous extrusion of copper strips[J]. Metalforming Machinery, 2002(5): 31-32.
[6]Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science[J]. Acta Materialia, 2013, 61(3): 782-817.
[7]Yuan Y, Li Z, Xiao Z, et al. Microstructure evolution and properties of Cu-Cr alloy during continuous extrusion process[J]. Journal of Alloys and Compounds, 2017, 703: 454-460.
[8]王军,运新兵,李冰,等. 纯铜连续挤压全过程的组织演变[J]. 有色金属(冶炼部分),2011(5):38-41.
Wang J, Yun X B, Li B, et al. Microstructure evolution of copper during continuous extrusion process[J]. Nonferrous Metals (Extractive Metallurgy), 2011(5): 38-41.
[9]付博文, 李冰, 陈星合,等.连续流变挤压与热处理对6061合金线材组织性能的影响[J].稀有金属,2023,47(8):1070-1078.
Fu B W, Li B, Chen X H, et al. Mechanical properties and microstructure evolution in 6061 alloy wire with continuous rheo-extrusion and heat treatment[J]. Chinese Journal of Rare Metals,2023,47(8):1070-1078.
[10]王昕,薛俊鹏,李博轩,等. 连续挤压纯铜扁线的不均匀组织与性能[J]. 材料与冶金学报,2021,20(3):223-231.
Wang X, Xue J P, Li B X, et al. Non-uniform microstructure and property of continuous extruded pure copper flat wire[J]. Journal of Materials and Metallurgy, 2021, 20(3): 223-231.
[11]Yang B W, Wang Y, Gao M Q, et al. Microstructural evolution and strengthening mechanism of Al-Mg alloys with fine grains processed by accumulative continuous extrusion forming[J]. Journal of Materials Science and Technology, 2022, 128: 195-204.
[12]Shen Y F, Guan R G, Zhao Z Y, et al. Ultrafine-grained Al-0.2Sc-0.1Zr alloy:The mechanistic contribution of nano-sized precipitates on grain refinement during the novel process of accumulative continuous extrusion[J]. Acta Materialia, 2015, 100: 247-255.
[13]赵颖,王俊霖,运新兵,等. 大应变条件下铝锶中间合金连续挤压组织演变[J]. 稀有金属材料与工程,2023,52(3):1094-1102.
Zhao Y, Wang J L, Yun X B, et al. Microstructure evolution of Al-Sr master alloy during continuous extrusion under large strain [J]. Rare Metal Materials and Engineering, 2023, 52(3): 1094-1102.
[14]宁海石,王延辉,杨俊英,等. 挤压轮转速对AZ31镁合金连续挤压显微组织的影响[J]. 热加工工艺,2011,40(19):4-6.
Ning H S, Wang Y H, Yang J Y,et al. Effect of extrusion wheel velocity on microstructure of AZ31 magnesium alloy produced by continuous extrusion [J]. Hot Working Technology, 2011, 40(19): 4-6.
[15]Li B, Li C H, Yao X J, et al. Effects of continuous extrusion on microstructure evolution and property characteristics of brass alloy[J]. Advanced Materials Research, 2011, 189-193: 2921-2924.
[16]田甜,运新兵,裴久杨,等. 挤压轮转速对铜棒材连续挤压速度差及组织的影响[J]. 塑性工程学报,2019,26(5):15-22.
Tian T, Yun X B, Pei J Y, et al.Effect of wheel angular velocity on flow velocity difference and microstructure of copper bar during continuous extrusion [J]. Journal of Plasticity Engineering, 2019, 26(5): 15-22.
[17]Zhao Y, Song B Y, Pei J Y, et al. Effect of deformation speed on the microstructure and mechanical properties of AA6063 during continuous extrusion process[J]. Journal of Materials Processing Technology, 2013, 213(11): 1855-1863.
[18]裴久杨,宋宝韫. 基于滑移线法的连续挤压腔体入口结构优化[J]. 有色金属加工,2007(5):38-41.
Pei J Y, Song B Y. Structure optimization of continuous extrusion chamber′s entrance based on slip-line method[J]. Nonferrous Metal Processing, 2007(5): 38-41.
[19]裴久杨,刘炎,樊志新. 挤压轮转速对铜镁合金连续挤压成形过程的影响[J]. 特种铸造及有色合金,2016,36(9):900-903.
Pei J Y, Liu Y, Fan Z X. Effect of wheel angular velocity on continuous extrusion copper magnesium alloy [J]. Special Casting & Nonferrous Alloys, 2016, 36(9): 900-903.
[20]Yun X B, Chen X, Zhao Y, et al. Effect of the die and tool structure on continuous extrusion expansion forming of copper[J].Materials Science Forum, 2011, 704-705: 196-202.
[21]刘明月,宋宝韫,运新兵,等. 基于有限元法的铜母线连续挤压扩展成形过程的数值模拟[J]. 热加工工艺,2008,37(17):72-75.
Liu M Y, Song B Y, Yun X B, et al. Numerical simulation of continuous extrusion extending forming process for copper busbar based on FEM [J]. Hot Working Technology, 2008, 37(17): 72-75.
[22]王跟浩. 基于TLJ250的铜棒材连续挤压成形数值模拟及实验研究[D]. 大连:大连交通大学,2018.
Wang G H. Numerical Simulation and Experimental Study on the Forming of Copper Bar by Continuous Extrusion Based on TLJ250 Machine [D]. Dalian:Dalian Jiaotong University, 2018.
[23]程磊,谢水生,黄国杰,等. 焊合室高度对分流组合模挤压成形过程的影响[J]. 稀有金属,2008,32(4):442-446.
Cheng L, Xie S S, Huang G J, et al. Effects of height of welding chamber heights on extrusion forming process of porthole die [J]. Chinese Journal of Rare Metals, 2008,32(4): 442-446.
[24]甘雨. 高性能低氧铜的微结构与形变机制研究[D]. 南京:东南大学,2022.
Gan Y. Study on the Microstructure and Deformation Mechanism of High-performance Low Oxygen Copper[D]. Nanjing:Southeast University, 2022.
[25]卫红凡. 浅谈低氧铜杆和无氧铜杆的性能及应用[J]. 机械管理开发,2005(6):54-55.
Wei H F. Talk about the performance and application of low-oxygen and non-oxygen copper rod[J]. Machinery Management and Development, 2005(6): 54-55.
[26]李冰,陈星合,付博文,等.7075铝合金线材连续流变挤压与双级时效热处理研究[J].稀有金属,2023,47(9):1195-1203.
Li B, Chen X H, Fu B W, et al. Continuous rheo-extrusion and double aging heat treatment of 7075 aluminum alloy wire[J]. Chinese Journal of Rare Metals,2023,47(9):1195-1203.
[27]何洪威. 坯料预热温度对H62黄铜连续挤压工艺影响研究[D].大连:大连交通大学,2014.
He H W. Effect of Preheating Temperature of H62 Brass Alloy on Continuous Extrusion Process[D]. Dalian:Dalian Jiaotong University, 2014.
[28]王凌博.连续挤压流动特征的模拟与实验研究[D].大连:大连交通大学,2020.
Wang L B. Simulation and Experimental Study of Continuous Extrusion Flow Characteristics[D]. Dalian:Dalian Jiaotong University, 2020.
|