网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
低氧铜杆连续挤压过程变形行为及组织演化
英文标题:Deformation behavior and microstructure evolution of low oxygen copper rod during continuous extrusion process
作者:杨志1 李凤勇1 杨宝成2 王松伟2 程明2 宋鸿武2 邵俊3 韩明奇3 
单位:1. 辽宁工程技术大学 材料科学与工程学院 2. 中国科学院金属研究所 师昌绪先进材料创新中心 3. 常州同泰高导新材料有限公司 
关键词:低氧铜杆 连续挤压 挤压轮转速 扁线 织构 
分类号:TG376
出版年,卷(期):页码:2024,49(10):46-55
摘要:

 连续挤压是制备并改善扁线组织的重要方法。首先,结合有限元模拟方法,系统地探究了挤压轮转速对低氧铜3 mm×2 mm规格的扁线成形过程中温度场、速度场和等效应变场的影响规律,获得了最佳连续挤压稳定成形的转速为6 r·min-1。基于模拟结果开展了连续挤压实验,并通过EBSD方法探究了低氧铜杆在连续挤压前后组织及织构演化情况。结果表明:连续挤压后扁线组织再结晶分数可达91.78%;挤压前织构组分以{110}<122>(21.16%)、{110}<112>(15.33%)和{112}<111>(14.51%)为主,经连续挤压后转变为以{110}<112>(29.55%)、{112}<111>(16.67%)和{123}<634>(11.07%)为主的稳定织构。

 Continuous extrusion is an important method to produce and improve the microstructures of flat wire. Therefore, the influence laws of the rotating speed of extrusion wheel on the temperature field, velocity field and equivalent strain field during the forming process of low oxygen copper flat wire with 3 mm×2 mm were systematically investigated by the finite element simulation method, and the optimal rotating speed for the stable forming of continuous extrusion was obtained as 6 r·min-1. Then, based on the simulation results, the continuous extrusion experiment was conducted, and the evolutions of microstructure and texture of the low oxygen copper rod before and after continuous extrusion were investigated by electron back scatter diffraction (EBSD) method. The results show that the recrystallization fraction of the flat wire after continuous extrusion reaches 91.78%. Before continuous extrusion, the textures components are mainly {011}<122>(21.26%), {110}<112>(15.33%) and {112}<111>(14.51%), and after continuous extrusion, they transform into stable textures mainly composed of {110}<112>(29.55%), {112}<111>(16.67%) and {123}<634>(11.07%).

基金项目:
重庆市自然科学基金创新发展联合基金(CSTB-2023NSCQ-LZX0116)
作者简介:
作者简介:杨志(1973-),男,硕士,副教授,E-mail:yangzhi279@163.com;通信作者:杨宝成(1993-),男,博士,助理研究员,E-mail:bchyang19b@imr.ac.cn
参考文献:

 [1]张宇,陈思思,刘铭赫,等. 扁线电机交流铜耗抑制研究[J]. 电机技术,2023(4):29-32,64.


Zhang Y, Chen S S, Liu M H, et al. Research on AC copper loss suppression of flat wire motors[J]. Electric Machine Technology, 2023(4): 29-32,64.

[2]宋宝韫,樊志新,刘元文,等. 应用连续挤压技术生产铜扁线[J]. 电线电缆,2001(1):17-18.

Song B Y, Fan Z X, Liu Y W, et al. Copper strip produced by continuous extrusion[J]. Wire & Cable, 2001(1): 17-18.

[3]谢建新,刘静安. 金属挤压理论与技术[M]. 北京:冶金工业出版社,2001.

Xie J X, Liu J A. Theory and Technology of Metal Extrusion[M]. Beijing:Metallurgical Industry Press, 2001.

[4]童金林. 铜及铜合金连续挤压技术的研究和应用[J]. 世界有色金属,2019(21):156-157.

Tong J L. Research and application of continuous extrusion technology of copper and copper alloys[J]. World Nonferrous Metals, 2019(21): 156-157.

[5]刘元文,宋宝韫,樊志新,等. 铜扁线连续挤压工艺[J]. 锻压机械,2002(5):31-32.

Liu Y W, Song B Y, Fan Z X, et al. Continuous extrusion of copper strips[J]. Metalforming Machinery, 2002(5): 31-32.

[6]Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science[J]. Acta Materialia, 2013, 61(3): 782-817.

[7]Yuan Y, Li Z, Xiao Z, et al. Microstructure evolution and properties of Cu-Cr alloy during continuous extrusion process[J]. Journal of Alloys and Compounds, 2017, 703: 454-460.

[8]王军,运新兵,李冰,等. 纯铜连续挤压全过程的组织演变[J]. 有色金属(冶炼部分),2011(5):38-41.

Wang J, Yun X B, Li B, et al. Microstructure evolution of copper during continuous extrusion process[J]. Nonferrous Metals (Extractive Metallurgy), 2011(5): 38-41.

[9]付博文, 李冰, 陈星合,等.连续流变挤压与热处理对6061合金线材组织性能的影响[J].稀有金属,2023,47(8):1070-1078.

Fu B W, Li B, Chen X H, et al. Mechanical properties and microstructure evolution in 6061 alloy wire with continuous rheo-extrusion and heat treatment[J]. Chinese Journal of Rare Metals,2023,47(8):1070-1078.

[10]王昕,薛俊鹏,李博轩,等. 连续挤压纯铜扁线的不均匀组织与性能[J]. 材料与冶金学报,2021,20(3):223-231.

Wang X, Xue J P, Li B X, et al. Non-uniform microstructure and property of continuous extruded pure copper flat wire[J]. Journal of Materials and Metallurgy, 2021, 20(3): 223-231.

[11]Yang B W, Wang Y, Gao M Q, et al. Microstructural evolution and strengthening mechanism of Al-Mg alloys with fine grains processed by accumulative continuous extrusion forming[J]. Journal of Materials Science and Technology, 2022, 128: 195-204.

[12]Shen Y F, Guan R G, Zhao Z Y, et al. Ultrafine-grained Al-0.2Sc-0.1Zr alloy:The mechanistic contribution of nano-sized precipitates on grain refinement during the novel process of accumulative continuous extrusion[J]. Acta Materialia, 2015, 100: 247-255.

[13]赵颖,王俊霖,运新兵,等. 大应变条件下铝锶中间合金连续挤压组织演变[J]. 稀有金属材料与工程,2023,52(3):1094-1102.

Zhao Y, Wang J L, Yun X B, et al. Microstructure evolution of Al-Sr master alloy during continuous extrusion under large strain [J]. Rare Metal Materials and Engineering, 2023, 52(3): 1094-1102.

[14]宁海石,王延辉,杨俊英,等. 挤压轮转速对AZ31镁合金连续挤压显微组织的影响[J]. 热加工工艺,2011,40(19):4-6.

Ning H S, Wang Y H, Yang J Y,et al. Effect of extrusion wheel velocity on microstructure of AZ31 magnesium alloy produced by continuous extrusion [J]. Hot Working Technology, 2011, 40(19): 4-6.

[15]Li B, Li C H, Yao X J, et al. Effects of continuous extrusion on microstructure evolution and property characteristics of brass alloy[J]. Advanced Materials Research, 2011, 189-193: 2921-2924.

[16]田甜,运新兵,裴久杨,等. 挤压轮转速对铜棒材连续挤压速度差及组织的影响[J]. 塑性工程学报,2019,26(5):15-22.

Tian T, Yun X B, Pei J Y, et al.Effect of wheel angular velocity on flow velocity difference and microstructure of copper bar during continuous extrusion [J]. Journal of Plasticity Engineering, 2019, 26(5): 15-22.

[17]Zhao Y, Song B Y, Pei J Y, et al. Effect of deformation speed on the microstructure and mechanical properties of AA6063 during continuous extrusion process[J]. Journal of Materials Processing Technology, 2013, 213(11): 1855-1863.

[18]裴久杨,宋宝韫. 基于滑移线法的连续挤压腔体入口结构优化[J]. 有色金属加工,2007(5):38-41.

Pei J Y, Song B Y. Structure optimization of continuous extrusion chamber′s entrance based on slip-line method[J]. Nonferrous Metal Processing, 2007(5): 38-41.

[19]裴久杨,刘炎,樊志新. 挤压轮转速对铜镁合金连续挤压成形过程的影响[J]. 特种铸造及有色合金,2016,36(9):900-903.

Pei J Y, Liu Y, Fan Z X. Effect of wheel angular velocity on continuous extrusion copper magnesium alloy [J]. Special Casting & Nonferrous Alloys, 2016, 36(9): 900-903.

[20]Yun X B, Chen X, Zhao Y, et al. Effect of the die and tool structure on continuous extrusion expansion forming of copper[J].Materials Science Forum, 2011, 704-705: 196-202.

[21]刘明月,宋宝韫,运新兵,等. 基于有限元法的铜母线连续挤压扩展成形过程的数值模拟[J]. 热加工工艺,2008,37(17):72-75.

Liu M Y, Song B Y, Yun X B, et al. Numerical simulation of continuous extrusion extending forming process for copper busbar based on FEM [J]. Hot Working Technology, 2008, 37(17): 72-75.

[22]王跟浩. 基于TLJ250的铜棒材连续挤压成形数值模拟及实验研究[D]. 大连:大连交通大学,2018.

Wang G H. Numerical Simulation and Experimental Study on the Forming of Copper Bar by Continuous Extrusion Based on TLJ250 Machine [D]. Dalian:Dalian Jiaotong University, 2018.

[23]程磊,谢水生,黄国杰,等. 焊合室高度对分流组合模挤压成形过程的影响[J]. 稀有金属,2008,32(4):442-446.

Cheng L, Xie S S, Huang G J, et al. Effects of height of welding chamber heights on extrusion forming process of porthole die [J]. Chinese Journal of Rare Metals, 2008,32(4): 442-446.

[24]甘雨. 高性能低氧铜的微结构与形变机制研究[D]. 南京:东南大学,2022.

Gan Y. Study on the Microstructure and Deformation Mechanism of High-performance Low Oxygen Copper[D]. Nanjing:Southeast University, 2022.

[25]卫红凡. 浅谈低氧铜杆和无氧铜杆的性能及应用[J]. 机械管理开发,2005(6):54-55.

Wei H F. Talk about the performance and application of low-oxygen and non-oxygen copper rod[J]. Machinery Management and Development, 2005(6): 54-55.

[26]李冰,陈星合,付博文,等.7075铝合金线材连续流变挤压与双级时效热处理研究[J].稀有金属,2023,47(9):1195-1203.

Li B, Chen X H, Fu B W, et al. Continuous rheo-extrusion and double aging heat treatment of 7075 aluminum alloy wire[J]. Chinese Journal of Rare Metals,2023,47(9):1195-1203.

[27]何洪威. 坯料预热温度对H62黄铜连续挤压工艺影响研究[D].大连:大连交通大学,2014.

He H W. Effect of Preheating Temperature of H62 Brass Alloy on Continuous Extrusion Process[D]. Dalian:Dalian Jiaotong University, 2014.

[28]王凌博.连续挤压流动特征的模拟与实验研究[D].大连:大连交通大学,2020.

Wang L B. Simulation and Experimental Study of Continuous Extrusion Flow Characteristics[D]. Dalian:Dalian Jiaotong University, 2020.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9