网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于响应面法和NSGA-Ⅱ的车用行星齿轮成形工艺
英文标题:Forming process of planetary gears for vehicles based on response surface method and NSGA-II
作者:吴玥 龚红英 尤晋 兰毅 
单位:上海工程技术大学 材料科学与工程学院 
关键词:行星齿轮 挤压成形 模具磨损 加热温度 挤压速度 摩擦因数 
分类号:TG386.1
出版年,卷(期):页码:2024,49(10):65-74
摘要:

 针对企业需求,对行星齿轮及其挤压成形工艺进行研究。使用DEFORM软件建立了车用行星齿轮的三维模型,并通过有限元仿真模拟分析了坯料加热温度、模具预热温度、挤压速度和摩擦因数等对齿轮成形质量和模具磨损的影响,发现齿轮破坏程度和模具磨损值受挤压速度和摩擦因数的影响较小。以减小齿轮破坏和模具磨损为优化目标,采用正交试验设计和Box-Behnken响应面试验设计方法,结合DEFORM仿真结果和Design-Expert 8软件进行了试验方案优化,并建立了相应的二次响应函数。最终,通过MATLAB软件和NSGA-II遗传算法进行了多目标优化,确定了最佳工艺参数组合,并成功优化了行星齿轮挤压成形工艺,提高了生产效率和模具寿命。

 For enterprises need, the planetary gears and their extrusion forming processes were studied, and the three-dimensional model of planetary gear for vehicles was established by software DEFORM. Then, the influences of blank heating temperature, die preheating temperature, extrusion speed and friction factor on the forming quality of gear and the die wear were analyzed by finite element simulation, and it is found that the gear damage degree and the die wear value were less affected by the extrusion speed and friction factor. Furthermore, with the optimization objective of reducing gear damage and die wear, the orthogonal test design and Box-Behnken response surface test design methods were adopted by combining with DEFORM simulation results and software Design-Expert 8 to optimize the test scheme,and the corresponding quadratic response function was established. Finally, the multi-objective optimization was carried out by software MATLAB and NSGA-II genetic algorithm, and the optimal combination of process parameters were determined, which successfully optimizes the planetary gear extrusion forming process and improves the production efficiency and die life.

基金项目:
上海市自然科学基金资助项目(20ZR1422700)
作者简介:
作者简介:吴玥(1999-),女,硕士研究生,E-mail:wuyue0028@163.com;通信作者:龚红英(1974-)女,博士,教授,E-mail:ghyyw@163.com
参考文献:

 [1]孙宗强,田福祥.直齿圆柱齿轮精锻研究的现状及发展趋势[J].青岛建筑工程学院学报,2000(4):98-102.


Sun Z Q, Tian F X. Current state and developing trend of the study on precision forging spur gear[J]. Journal of Qingdao Institute of Architecture and Engineering, 2000(4): 98-102.

[2]左斌.圆柱直齿轮热精锻冷挤压复合成形关键技术研究[D].北京:北京科技大学,2015.

Zuo B. Research on Key Technologies of Cylindrical Spur Gear Hot Precision Forging and Cold Extrusion Composite Forming[D].Beijing: University of Science and Technology Beijing, 2015.

[3]李景丹.CAP1400主管道热锻过程微观组织演变行为与工艺控制[D].太原:太原科技大学,2020.

Li J D. Microstructure Evolution Behavior and Process Control of the Hot Forging Process of the CAP1400 Main Pipeline[D].Taiyuan: Taiyuan University of Science and Technology, 2020.

[4]Kanani J B,Lalwani D I. Finite element analysis of AISI 8620 alloy spur gear hot forging[A]. IOP Conference Series: Materials Science and Engineering[C].IOP Publishing,2020.

[5]曾珊琪,丁毅.模具寿命与失效[M].北京:化学工业出版社,2005.

Zeng S Q, Ding Y. Mold Life and Failure[M]. Beijing: Chemical Industry Press,2005.

[6]邱德花.锥齿轮热—冷复合成形工艺数值模拟及试验研究[D].北京:中国机械科学研究总院集团有限公司,2012.

Qiu D H. Numerical Simulation and Experimental Study of Hot-Cold Composite Forming Process of Bevel Gear[D]. Beijing: China Academy of Machinery Sciences and Technology Group Co.,Ltd., 2012.

[7]韩娟娟.微体积成形零件表面粗糙度影响因素研究及其预测模型构建[D].济南:山东大学,2019.

Han J J. Research on the Influencing Factors of Surface Roughness of Micro-volume Formed Parts and the Construction of Its Prediction model[D]. Jinan: Shandong University, 2019.

[8]胡建军,李小平.DEFORM-3D塑性成形CAE应用教程[M].北京:北京大学出版社,2011.

Hu J J, Li X P. DEFORM-3D Plastic Forming CAE Application Tutorial[M]. Beijing: Peking University Press, 2011.

[9]罗时光,金红娇.试验设计与数据处理[M].北京:中国铁道出版社,2018.

Luo S G, Jin H J. Experimental Design and Data Processing[M]. Beijing: China Railway Press, 2018.

[10]陈潇凯.车辆多学科设计优化方法[M].北京:北京理工大学出版社,2018.

Chen X K. A Multidisciplinary Approach to Vehicle Design Optimization[M]. Beijing: Beijing Institute of Technology Press, 2018.

[11]施为钟,龚红英,王斌,等.基于响应面法与NSGA-Ⅱ的汽车C柱零件成形质量多目标优化[J].塑性工程学报,2021,28(8):30-37.

Shi W Z, Gong H Y, Wang B, et al. Multi-objective optimization of forming quality of automotive C-pillar parts based on response surface methodology and NSGA-Ⅱ[J]. Journal of Plasticity Engineering,2021, 28(8): 30-37.

[12]彭必友,胡腾,肖兵,等.基于神经网络和遗传算法的冲压成形多目标优化技术[J].塑性工程学报,2010,17(1):57-61.

Peng B Y, Hu T, Xiao B, et al. Study on multi-objects optimization design techniques of stamping based on neural network and genetic algorithm[J]. Journal of Plasticity Engineering,2010,17(1):57-61.

[13]Holland J H. Adaptation in Natural and Artificial Systems[M]. Michigan: UMichigan Press, 1975.

[14]郭军.带精英策略的非支配排序遗传算法优化研究[D].沈阳:辽宁大学,2017.

Guo J. Research on the Optimization of Non-dominant Sequencing Genetic Algorithm with Elite Strategy[D]. Shenyang:Liaoning University, 2017.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9