网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
水基硅氧烷聚合物润滑剂在铝合金热冲压工况下的润滑可行性
英文标题:Feasibility on lubrication of water-based siloxane polymer lubricant under hot stamping condition of aluminum alloy
作者:邓亮1 娄思源1 毛轩1 Braham Prakash2 
单位:1.上海应用技术大学 机械工程学院 2. 清华大学 高端装备界面科学与技术全国重点实验室 
关键词:铝合金 水基硅氧烷润滑剂 热冲压 销-盘摩擦实验 摩擦因数 
分类号:TH117.1
出版年,卷(期):页码:2024,49(10):195-202
摘要:

铝合金热冲压是实现汽车轻量化目标的重要制造手段,生产过程中的摩擦磨损造成的板料擦伤和开裂是批量生产的主要阻碍。为了研究热冲压过程中润滑剂的适用性和润滑机理。基于此,基于销-盘摩擦实验设备,通过合理的实验设计模拟了热冲压的实验工况,选用了一种使用工况接近的水基脱模剂进行摩擦实验,并评价其在热冲压工况下的润滑性能,探究其润滑机理。通过实验发现,水基硅氧烷润滑剂能够通过隔绝模具与工件直接接触,获得较长时间的低摩擦因数状态。利用水基润滑剂实现铝合金热冲压过程中的稳定低摩擦因数状态是可行的。

Hot stamping of aluminum alloy is an important manufacturing method to achieve the goal of automobile lightweight, and scratches and cracks of sheets caused by friction and wear in the production process are the main obstacles to mass production. In order to study the applicability and lubrication mechanism of lubricants in hot stamping process, based on the pin-disk friction experimental equipment, the experimental conditions of hot stamping were studied by reasonable experimental design, and a water-based release agent with similar working condition was selected for friction experiment to evaluate its lubrication performance under the hot stamping condition and explore its lubrication mechanism. Furthermore, through experiments, it is found that the water-based siloxane lubricant could obtain a long time low friction factor state by isolating the die from the workpiece. So it is feasible to use water-based lubricant to achieve stable and low friction factor state in hot stamping process of aluminum alloy. 

基金项目:
国家自然科学基金资助项目(52005339);高端装备界面科学与技术全国重点实验室开放基金资助项目(SKLTKF22B16);上海应用技术大学协同创新基金(XTCX2024-02)
作者简介:
作者简介:邓亮(1986-),男,博士,讲师,E-mail:liangdeng@sit.edu.cn;通信作者:Braham Prakash(1952-),男,博士,教授,E-mail:sit_submission@126.com
参考文献:

[1]Mori K, Bariani P F, Behrens B A, et al. Hot stamping of ultra-high strength steel parts[J]. CIRP Annals, 2017, 66(2): 755-777.


[2]Garrett R P, Lin J, Dean T A. An investigation of the effects of solution heat treatment on mechanical properties for AA 6XXX alloys: Experimentation and modelling[J]. International Journal of Plasticity, 2005, 21(8): 1640-1657.

[3]Deng L, Mozgovoy S, Hardell J, et al. Development of a tribological test programme based on press hardening simulations[J]. Tribology Letters, 2017, 65(20): 1-11.

[4]邓亮,徐冰倩.7075铝合金和QRO90模具钢在热冲压工况下的摩擦磨损行为[J].润滑与密封,2023,48(5):95-102.

Deng L, Xu B Q. Friction and wear behavior of 7075 aluminum alloy and QRO90 tool steel during hot stamping[J].Lubrication Engineering, 2023, 48(5):95-102.

[5]Ertug B. Sintering Applications [M]. Croatia: InTech.Inc.,2013.

[6]Xie H M, Jiang B, He J J, et al. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts[J]. Tribology International, 2016, 93: 63-70.

[7]陈锐,李平,陆玉峻.固体润滑材料——石墨的应用[J].炭素,2000(4):23-25,32.

Chen R, Li P, Lu Y J. Solid lubricating material-graphite [J].Carbon, 2000(4):23-25, 32.

[8]Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446(7131): 60-63.

[9]Wang J X, Ma J, Zhuang Z F, et al. Toward direct regeneration of spent lithiumion batteries: A next-generation recycling method[J]. Chemical Reviews, 2024, 124(5): 2839-2887.

[10]马丽然. 高水基乳化液成膜特性及机理研究[D].北京:清华大学,2010.

Ma L R. Research on the Lubricating Characteristics and Mechanisms of Aqueous Emulsions[D]. Beijing: Tsinghua University, 2010.

[11]王佳贝,孔尚,胡文敬,等.石墨烯作为添加剂在两种成品润滑油中的应用可行性研究[J].摩擦学学报, 2022, 42(4):775-784.

Wang J B, Kong S, Hu W J, et al. Application feasibility of graphene as additive in two kinds of lubricating oil[J]. Tribology, 2022, 42(4): 775-784.

[12]张金明,张栋,白喜峰,等. 纳米水基润滑剂在轧制钢轨中的应用[J]. 铁道技术监督, 2021, 49(12):38-41.

Zhang J M, Zhang D, Bai X F, et al. The application of nano-water-based lubricant in rail rolling[J]. Railway Quality Control, 2021, 49(12): 38-41.

[13]江炳河.6016铝合金热冲压成形数值模拟及工艺参数优化[D].杭州:浙江科技大学,2024.

Jiang B H. Research on 6016 Aluminum Alloy Hot Stamping Numerical Simulation Forming and Process Parameter Optimization[D]. Hangzhou:Zhejiang University of Science & Technology, 2024. 

[14]胡道春.6082铝合金高温变形行为及精锻工艺数值模拟[J].特种铸造及有色合金,2015,35(9):927-930.

Hu D C. Hot deformation behavior of 6082 aluminum and numerical simulation of precision forging process[J]. Special Casting & Nonferrous Alloys, 2015,35(9):927-930.

[15]Landrock A H. Handbook of Plastic Foams: Types, Properties, Manufacture and Applications[M]. Amsterdam: Elsevier Inc., 1995.

[16]赵秋生.水基型有机硅脱模剂及含氟聚丙烯酸酯乳液的制备与性能研究[D].山东:山东大学,2021.

Zhao Q S. Study on Preparation and Performance of Water-based Silicone Release Agent and Fluorinated Polyacrylate Emulsion[D]. Shandong: Shandong University,2021.

[17]Chichester C W. Development of high service temperature fluids[R]. SAE Technical Paper, 2016.

[18]郑哲,方建华,王建华,等.新型水溶性润滑添加剂的研究进展[J].摩擦学学报,2017,37(3):409-420.

Zheng Z, Fang J H, Wang J H, et al. The research progress of novel water-soluble lubricant additives[J]. Tribology, 2017, 37(3): 409-420.

[19]Xu D K, Rometsch P A, Birbilis N. Improved solution treatment for an as-rolled Al-Zn-Mg-Cu alloy: Part I. Characterization of constituent particles and overheating[J]. Materials Science and Engineering:A, 2012, 534: 234-243.

[20]Pereira M P, Duncan J L, Yan W Y, et al. Contact pressure evolution at the die radius in sheet metal stamping[J]. Journal of Materials Processing Technology, 2009, 209(7): 3532-3541.

[21]蒋怡涵,吴佳松,王武荣,等.模具温升对22MnB5硼钢裸板高温摩擦磨损特性的影响[J]. 上海交通大学学报, 2021, 55(3): 258-264.

Jiang Y H, Wu J S, Wang W R, et al. Effect of mold heating on high-temperature friction and wear characteristics of uncoated 22MnB5 boron steel[J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 258-264.

[22]Deng L, Mozgovoy S, Hardell J, et al. Numerical study of contact conditions in press hardening for tool wear simulation[J]. International Journal of Material Forming, 2017, 10(5): 717-727.

[23]Lu J, Song Y L, Hua L, et al. Thermal deformation behavior and processing maps of 7075 aluminum alloy sheet based on isothermal uniaxial tensile tests[J]. Journal of Alloys and Compounds, 2018, 767: 856-869.

[24]Mozgovoy S, Hardell J, Prakash B. High temperature friction and wear performance of PVD coatings under press hardening contact conditions[J]. Advances in Tribology, 2019, 2019(1):1-15.

[25]李俊鹏,沈健,闫晓东,等. 温度对7075铝合金热变形显微组织演化的影响[J]. 中国有色金属学报, 2008, 18(11):1951-1957.

Li J P, Shen J, Yan X D, et al. Effect of temperature on microstructure evolution of 7075 alloy during hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2008,18(11):1951-1957.

[26]钱芳. 热变形温度对7075铝合金显微组织和性能的影响[J]. 热加工工艺, 2017, 46(5):166-167, 170.

Qian F. Effect of hot deformation temperature on microstructure and properties of 7075 Al-alloy[J]. Hot Working Technology, 2017, 46(54): 166-167,170.

[27]Kilic S, Kacar I·, 瘙塁ahin M, et al. Investigation of effect on the mechanical properties of quenching temperatureinAA7075[J]. Nigˇde mer Halisdemir University Journal of Engineering Sciences, 2020, 9(1): 528-537.

[28]Holt N, Ludwig C. Form and function: Developing production processes and structures for electric vehicle architectures [EB/OL]. https://www.automotivemanufacturingsolutions.com, 2023-04-25. 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9