[1]Shi X H, Zeng W D, Zhao Q Y, et al. Study on the microstructure and mechanical properties of Aermet100 steel at the tempering temperature around 482 ℃[J]. Journal of Alloys and Compounds, 2016, 679: 184-190.
[2]Ji G L, Li F G, Li Q H, et al. Research on the dynamic recrystallization kinetics of Aermet100 steel [J]. Materials Science and Engineering: A, 2010, 527(9): 2350-2355.
[3]Li J H, Zhan D P, Jiang Z H, et al. Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: A review [J]. Journal of Materials Research and Technology, 2023, 23: 172-190.
[4]Shi L Q, Ran X Z, Zhai Y M, et al. Influence of isothermal tempering on microstructures and hydrogen-environmentally embrittlement susceptibility of laser additively manufactured ultra-high strength AerMet100 steel [J]. Materials Science and Engineering: A, 2023, 876: 145167.
[5]李超群,张立文,李飞,等. 10钢热变形过程动态再结晶行为[J]. 锻压技术,2022,47(2):207-212.
Li C Q,Zhang L W,Li F,et al. Dynamic recrystallization behavior for 10 steel during thermal deformation process[J]. Forging & Stamping Technology,2022,47(2):207-212.
[6]Huang L, Li C M, Li C L, et al. Research progress on microstructure evolution and hot processing maps of high strength β titanium alloys during hot deformation [J]. Transactions of Nonferrous Metals Society of China, 2022, 32(12): 3835-3859.
[7]Xu L, Chen L, Chen G J, et al. Hot deformation behavior and microstructure analysis of 25Cr3Mo3NiNb steel during hot compression tests [J]. Vacuum, 2018, 147: 8-17.
[8]Zeng R, Huang L, Li J J, et al. Quantification of multiple softening processes occurring during multi-stage thermoforming of high-strength steel [J]. International Journal of Plasticity, 2019, 120: 64-87.
[9]Ashitiani H R R, Parsa M H, Bisadi H. Constitutive equations for elevated temperature flow behavior of commercial purity aluminum [J]. Materials Science and Engineering: A, 2012, 545: 61-67.
[10]Huh H, Lee H J, Song J H. Dynamic hardening equation of the auto-body steel sheet with the variation of temperature [J]. International Journal of Automotive Technology, 2012, 13(1): 43-60.
[11]Huang Y C, Lin Y C, Deng J, et al. Hot tensile deformation behaviors and constitutive model of 42CrMo steel [J]. Materials & Design, 2014, 53: 349-356.
[12]Vilamosa V, Clausen A H, Borvik T, et al. A physically-based constitutive model applied to AA6082 aluminium alloy at large strains, high strain rates and elevated temperatures [J]. Materials & Design, 2016, 103: 391-405.
[13]Haghdad N, Martin D, Hodgson P. Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel[J]. Materials & Design, 2016, 106: 420-427.
[14]赵杰. TA15钛合金板材高温变形行为及变速率热态气压成形研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020.
Zhao J. Research on Hot Deformation Behavior and Variable-rate Hot Gas Forming of TA15 Titanium Sheet [D]. Harbin: Harbin Institute of Technology, 2020.
[15]Huang C Q, Jia X D, Zhang Z W. A modified back propagation artificial neural network model based on genetic algorithm to predict the flow behavior of 5754 aluminum alloy [J]. Materials, 2018, 11(5): 855.
[16]Shu X Y, Lu S Q, Wang K L, et al. A comparative study on constitutive equations and artificial neural network model to predict high-temperature deformation behavior in nitinol 60 shape memory alloy [J]. Journal of Materials Research, 2015, 30(12): 1988-1998.
[17]Ashtiani H R R, Shahsavari P. A comparative study on the phenomenological and artificial neural network models to predict hot deformation behavior of AlCuMgPb alloy [J]. Journal of Alloys and Compounds, 2016, 687: 263-273.
[18]Sellar C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
[19]王俊, 王克鲁, 鲁世强, 等. TA5钛合金热变形行为及本构模型 [J]. 塑性工程学报, 2022, 29(5): 153-160.
Wang J, Wang K L, Lu S Q, et al. Hot deformation behavior and constitutive model of TA5 titanium alloy [J]. Journal of Plasticity Engineering, 2022, 29(5): 153-160.
[20]章晓婷, 黄亮, 李建军, 等. 300M高强钢高温流变行为及本构方程 [J]. 中南大学学报(自然科学版), 2017, 48(6): 1439-1447.
Zhang X T, Huang L, Li J J, et al. Flow behaviors and constitutive model of 300M high strength steel at elevated temperature [J]. Journal of Central South University (Science and Technology), 2017, 48(6): 1439-1447.
[21]Zhao M J, Huang L, Li C M, et al. Evaluation of the deformation behaviors and hot workability of a high-strength low-alloy steel [J]. Materials Science and Engineering: A, 2021, 810: 141031.
[22]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel [J]. Materials Science and Engineering: A, 2010, 527(26): 6980-6986.
[23]Kotkunde N, Deole A D, Gupta A K, et al. Comparative study of constitutive modeling for Ti-6Al-4V alloy at low strain rates and elevated temperatures [J]. Materials & Design, 2014, 55: 999-1005.
[24]刘玉冰, 管延锦, 丁慧莹, 等. 模具钢的高温变形行为及本构模型的建立 [J]. 锻压技术, 2023, 48(9): 220-229.
Liu Y B, Guan Y J, Ding H Y, et al. Deformation behavior at high temperature and establishment of constitutive model for die steel [J]. Forging & Stamping Technology, 2023, 48(9): 220-229.
[25]Jarugla R, Aravid U, Meena B S, et al. High temperature deformation behavior and constitutive modeling for flow behavior of alloy 718 [J]. Journal of Materials Engineering and Performance, 2020, 29(7): 4692-4707.
[26]Adarsh S H, Sampath V. Prediction of high temperature deformation characteristics of an Fe-based shape memory alloy using constitutive and artificial neural network modelling [J]. Materials Today Communications, 2020, 22: 100841.
[27]Wen D X, Yue T X, Xiong Y B, et al. High-temperature tensile characteristics and constitutive models of ultrahigh strength steel [J]. Materials Science and Engineering: A, 2021, 803: 140491.
[28]Shokry A, Gowid S, Kharmanda G, et al. Constitutive models for the prediction of the hot deformation behavior of the 10%Cr steel alloy [J]. Materials, 2019, 12(18): 2873.
[29]Sakai T, Belyakov A, Kaibyshe R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Progress in Materials Science, 2014, 60: 130-207.
[30]Jonas J J, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization [J]. Acta Materialia, 2009, 57(9): 2748-2756.
[31]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Seventh International Symposium on Ballistics, the Hague, the Netherlands, 1983, 21: 541-548.
[32]Chao Z L, Jiang L T, Chen G Q, et al. A modified Johnson-Cook model with damage degradation for B4Cp/Al composites [J]. Composite Structures, 2022, 282: 115029.
[33]石旭. 300M超高强钢高温本构模型的研究 [D]. 哈尔滨: 哈尔滨理工大学, 2015.
Shi X. Research on the High Temperature Constitutive Model of 300M Ultrahigh Strength Steel [D]. Harbin: Harbin Institute of Technology, 2015.
|