网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
H13模具钢的热变形行为及本构模型建立
英文标题:Hot deformation behavior and establishment of constitutive model for H13 die steel
作者:呙程祥1 2 王家昌3 张明磊3 张松1 2 
单位:1.山东大学 机械工程学院 高效洁净机械制造教育部重点实验室 2.山东大学 机械工程国家级实验教学示范中心 3.青岛海信模具有限公司 
关键词:H13模具钢 热变形 流动应力 Arrhenius模型 BP-ANN模型 
分类号:TG142.1
出版年,卷(期):页码:2024,49(10):221-229
摘要:

为了改善H13模具钢的热加工性能和优化热成形工艺参数,利用Gleeble-3800热模拟试验机研究了H13模具钢在不同应变速率、变形温度和真应变范围内的热变形行为,并建立了应变补偿型Arrhenius和BP-ANN两种本构模型来描述H13模具钢的流动行为。结果表明,流动应力随着应变速率的降低和变形温度的升高而减小。通过比较两种已建立的本构模型的预测能力发现,Arrhenius模型和BP-ANN模型的相关系数分别为0.99536和0.99952,平均相对误差分别为3.58%和1.23%,而平均绝对误差分别为4.45641和1.37732,BP-ANN模型对H13模具钢高温流动应力的预测具有更好的准确性和稳定性。

In order to improve the hot working performance and optimize the hot forming process parameters for H13 die steel. the hot deformation behavior of H13 die steel under different strain rates, deformation temperatures and true strain ranges was studied by thermal simulation tester Gleeble-3800, and two kinds of constitutive model such as Arrhenius with strain compensation and BP-ANN were established to describe the flow behavior of H13 die steel. The results show that the flow stress decreases with the decreasing of strain rate and the increasing of deformation temperature. By comparing the prediction ability of two established constitutive models, it is found that the correlation coefficients of Arrhenius model and BP-ANN model are 0.99536  and 0.99952,the average relative errors are 3.58% and 1.23%, and the average absolute errors are 4.45641 and 1.37732, respectively. The BP-ANN model has better accuracy and stability in predicting the high-temperature flow stress of H13 die steel.

基金项目:
青岛市科技计划(24-1-2-qljh-10-gx);山东省泰山学者工程专项(ts201712002)
作者简介:
作者简介:呙程祥(1997-),男,硕士研究生,E-mail:202234368@mail.sdu.edu.cn;通信作者:张松(1969-),男,博士,教授,E-mail:zhangsong@sdu.edu.cn
参考文献:

[1]贺彤, 王海建, 李花兵, 等.含氮热作模具钢的研究现状与发展[J]. 钢铁研究学报, 2022, 34(12): 1334-1344.


He T, Wang H J, Li H B, et al. Current research status and development of nitrogen-containing hot-work die steel [J].Journal of Iron and Steel Research, 2022, 34(12): 1334-1344.

[2]Lin Y C, Chen M S, Zhong J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel [J]. Computational Materials Science, 2008, 42(3): 470-477.

[3]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working [J]. Materials & Design, 2011, 32(4): 1733-1759.

[4]周靖, 王宝雨, 徐伟力, 等.耦合损伤的22MnB5热变形本构模型[J]. 北京科技大学学报, 2013, 35(11): 1450-1457.

Zhou J, Wang B Y, Xu W L, et al. Damage-coupled constitutive model of 22MnB5 steel in hot deformation [J]. Journal of University of Science and Technology Beijing, 2013, 35(11): 1450-1457.

[5]傅垒, 王宝雨, 林建国, 等.耦合位错密度的6111铝合金热变形本构模型[J]. 北京科技大学学报, 2013, 35(10): 1333-1339.

Fu L, Wang B Y, Lin J G, et al. Constitutive model coupled with dislocation density for hot deformation of 6111 aluminum alloy [J]. Journal of University of Science and Technology Beijing, 2013, 35(10): 1333-1339.

[6]袁康博, 姚小虎, 王瑞丰, 等.金属材料的率-温耦合响应与动态本构关系综述[J]. 爆炸与冲击, 2022, 42(9): 4-37.

Yuan K B, Yao X H, Wang R F, et al. A review on rate-temperature coupling response and dynamic constitutive relation of metallic materials [J].Explosion and Shock Waves, 2022, 42(9): 4-37.

[7]邱宇, 袁飞, 曾元松, 等.4Cr5MoSiV1热作模具钢的热变形行为与热加工图[J]. 机械工程材料, 2021, 45(2): 71-77.

Qiu Y, Yuan F, Zeng Y S, et al. Hot deformation behavior and hot processing map of 4Cr5MoSiV1 hot working die steel [J].Materials for Mechanical Engineering, 2021, 45(2): 71-77.

[8]陈国鑫, 桑宝光, 刘宏伟, 等.H13钢高温热变形特征与动态再结晶行为[J]. 塑性工程学报, 2022, 29(6): 193-202.

Chen G X, Sang B G, Liu H W, et al. Hot deformation characteristics and dynamic recrystallization behavior of H13 steel at high temperature [J].Journal of Plasticity Engineering, 2022, 29(6): 193-202.

[9]毛欢, 韩莹莹.基于应变补偿Arrhenius模型的TC20钛合金本构方程研究[J]. 铸造技术, 2018, 39(9): 1939-1942,1947.

Mao H, Han Y Y. Study on constitutive equations of TC20 alloy based on strain-compensated arrhenius model [J]. Foundry Technology, 2018, 39(9): 1939-1942,1947.

[10]曹建国, 王天聪, 李洪波, 等.基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J]. 机械工程学报, 2016, 52(4): 90-96,102.

Cao J G, Wang T C, Li H B, et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified Arrhenius model [J]. Journal of Mechanical Engineering, 2016, 52(4): 90-96,102.

[11]丁慧莹, 管延锦, 李玉琦, 等.GGG70L球墨铸铁的高温变形行为及其本构模型建立[J]. 锻压技术, 2022, 47(12): 249-255.

Ding H Y, Guan Y J, Li Y Q, et al. Deformation behavior at high temperature and establishment of constitutive model of GGG70L ductile iron [J].Forging & Stamping Technology, 2022, 47(12): 249-255.

[12]杨合, 詹梅.材料加工过程实验建模方法[M]. 西安: 西北工业大学出版社, 2008.

Yang H, Zhan M. Material Processing Experimental Modeling [M]. Xi′an: Northwestern Polytechnical University Press, 2008.

[13]刘雪峰, 马胜军, 刘锦平, 等.Cu-12%Al合金高温压缩变形过程本构关系的BP神经网络模型[J]. 材料工程, 2009(1): 10-14.

Liu X F, Ma S J, Liu J P, et al. BP neural networks models for constitutive relationship during high temperature deformation process of Cu-12%Al alloy [J]. Journal of Materials Engineering, 2009(1): 10-14.

[14]邓肖峰, 王凯, 石伟.ZL205A铝合金淬火过程本构模型及数值模拟[J]. 材料热处理学报, 2021, 42(8): 125-136.

Deng X F, Wang K, Shi W. Constitutive model and numerical simulation of ZL205A aluminum alloy during quenching [J].Transactions of Materials and Heat Treatment, 2021, 42(8): 125-136.

[15]Pasco J, McCarthy T, Parlee J, et al. Constitutive modeling of modified-H13 steel [J]. MRS Communications, 2022, 12(3): 343-351.

[16]Zamani M R, Mirzadeh H, Malekan M. Artificial neural network applicability in studying hot deformation behaviour of high-entropy alloys [J]. Materials Science and Technology, 2023,39(18):1-9.

[17]Ji G L, Li F G, Li Q H, et al. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel [J]. Materials Science and Engineering: A, 2011, 528(13-14): 4774-4782.

[18]ASTM E209-18, Standard practice for compression tests of metallic materials at elevated temperatures with conventional or rapid heating rates and strain rates [S].

[19]Sarkar A, Kapoor R, Verma A, et al. Hot deformation behavior of Nb-1Zr-0.1C alloy in the temperature range 700-1700 ℃ [J]. Journal of Nuclear Materials, 2012, 422(1-3): 1-7.

[20]Song C N, Cao J G, Xiao J, et al. High-temperature constitutive relationship involving phase transformation for non-oriented electrical steel based on PSO-DNN approach[J]. Materials Today Communications,2023,34: 105210.

[21]Lin Y C, Zhang J, Zhong J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel [J]. Computational Materials Science, 2008, 43(4): 752-758.

[22]汪雅婷, 黎俊良, 袁楷峰, 等. 基于GA改进BP神经网络预测热变形流变应力模型的建立[J]. 材料工程, 2022,50(6):170-177.

Wang Y T, Li J L, Yuan K F, et al. Establishment of hot deformation flow stress prediction model based on GA improved BP neural network [J]. Journal of Materials Engineering, 2022,50(6): 170-177.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9