网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铸态06Cr18Ni11Ti钢的热变形及动态再结晶模型
英文标题:Hot deformation and dynamic recrystallization model of as-cast 06Cr18Ni11Ti steel
作者:林苑 袁武华 
单位:湖南大学 材料科学与工程学院 
关键词:06Cr18Ni11Ti钢 热变形 动态再结晶 本构方程 双锥试样 
分类号:TG142.1
出版年,卷(期):页码:2024,49(10):230-237
摘要:

 采用数值模拟和热压缩试验,研究了铸态06Cr18Ni11Ti钢的热变形行为,构建了其高温流变本构方程,并基于微观组织、加工硬化率建立了动态再结晶模型。将得到的模型导入Deform有限元模拟软件,对双锥试样热压缩试验过程进行了仿真验证。结果表明:高温低应变速率条件下,流变曲线呈常见的动态再结晶型;应变速率较大(1 s-1)或温度较低(850 ℃)时,热压缩过程中流变曲线虽呈现加工硬化型,但实际存在动态再结晶现象。构建了包括临界应变模型、动态再结晶体积分数模型及动态再结晶晶粒尺寸模型在内的动态再结晶模型,最终仿真计算结果与双锥试验结果吻合较好,建立的模型能较好地预测铸态06Cr18Ni11Ti钢锻造过程的动态再结晶。

The hot deformation behavior of as-cast 06Cr18Ni11Ti steel was studied by numerical simulation and hot compression experiments, the high-temperature rheological constitutive equation was constructed, and the dynamic recrystallization model was established based on the microstructure and work hardening rate. Then, the obtained model was imported into finite element simulation software Deform, and the hot compression experiment process of bipyramidal specimen was simulated and verified. The results show that the rheological curve is DRX type under the condition of high temperature and low strain rate. At high strain rates (1 s-1) or low temperatures (850 ℃), the rheological curve during hot compression appear to be work hardening, but the dynamic recrystallization phenomenon actually exists. The dynamic recrystallization model was constructed, including the critical strain model, the dynamic recrystallization volume fraction model and the recrystallization grain size model. At last, the calculated results of simulation are in good agreement with the results of bipyramidal experiment, and the established model can effectively predict the dynamic recrystallization of as-cast 06Cr18Ni11Ti steel during the forging process.

基金项目:
作者简介:
作者简介:林苑(1998-),女,硕士研究生,E-mail:linyuan2309@163.com;通信作者:袁武华(1973-),男,博士,教授,E-mail:yuan46302@163.com
参考文献:

[1]Wang J M, Su H Z, Chen K, et al. Effect of δ-ferrite on the stress corrosion cracking behavior of 321 stainless steel[J]. Corrosion Science, 2019, 158: 108079.


[2]Tiamiyu A A, Eskandari M, Sanayei M, et al. Mechanical behavior and high-resolution EBSD investigation of the microstructural evolution in AISI 321 stainless steel under dynamic loading condition[J]. Materials Science and Engineering: A, 2016, 673: 400-416.

[3]Green G, Higginson R, Hogg S, et al. Analysis of ferrite formed in 321 grade austenitic stainless steel[J]. Materials Science and Technology, 2015, 31(4): 418-425.

[4]Chen H Q, Wang Z X, Qin F M, et al. Hot deformation behavior and processing maps of as-cast Mn18Cr18N steel[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32(4): 935-943.

[5]Haj M, Mansouri H, Vafaei R, et al. Hot compression deformation behavior of AISI 321 austenitic stainless steel[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20: 529-534.

[6]Anoop C R, Singh R K, Kumar R R, et al. Development and validation of processing maps for hot deformation of modified AISI 321 austenitic stainless steel[J]. Materials Performance and Characterization, 2020, 9(2): 150-169.

[7]Zhao D L, Ren L G, Wang Y, et al. Hot deformation behaviors of as cast 321 austenitic stainless steel[J]. Metals, 2021, 11(8): 1245.

[8]Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ International, 2003, 43(5): 684-691.

[9]Sellars C M. Computer modelling of hot-working processes[J]. Materials Science and Technology, 1985, 1(4): 325-332.

[10]Wang L H, Yang B, Li Z Y. Microstructure evolution and dynamic recrystallization model of extruded AZ41M magnesium alloy during hot deformation[J]. Transactions of the Indian Institute of Metals, 2021, 74(11): 2801-2810.

[11]杜帅,李颖,李敏,等. H156热作模具钢动态再结晶的实验与数值模拟研究[J]. 锻压技术,2023,48(1):245-252.

Du S,Li Y,Li M,et al. Experiment and numerical simulation study on dynamic recrystallization for H156 hot work die steel [J]. Forging & Stamping Technology,2023,48(1): 245-252.

[12]El Wahabi M, Cabrera J M, Prado J M. Hot working of two AISI 304 steels: A comparative study[J]. Materials Science and Engineering: A, 2003, 343(1-2): 116-125.

[13]Quan G Z, Shi Y, Wang Y X, et al. Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stress-strain data[J]. Materials Science and Engineering: A, 2011, 528(28): 8051-8059.

[14]Liu Y H, Yao Z K, Ning Y Q, et al. Effect of deformation temperature and strain rate on dynamic recrystallized grain size of a powder metallurgical nickel-based superalloy[J]. Journal of Alloys and Compounds, 2017, 691: 554-563.

[15]陈胜虎,王琪玉,姜海昌,等.δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J].金属学报,2024,60(3):367-376.

Chen S H, Wang Q Y, Jiang H C, et al. Effect of δ-ferrite on hot deformation and recrystallization of 316KD austenitic stainless steel for sodium-cooled fast reactor application[J]. Acta Metallurgica Sinica, 2024, 60(3): 367-376.

[16]周琳,刘运玺,陈玮,等.Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及热加工图[J].稀有金属,2022,46(1):27-35.

Zhou L, Liu Y X, Chen W, et al. Thermal deformation behavior and processing map of Ti-4Al-5Mo-6Cr-5V-1Nb alloy[J].Chinese Journal of Rare Metals, 2022, 46(1): 27-35.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9