\[1] 邓加东,韩天,杨桢宇,等. 电冲击处理对316不锈钢构筑成形的影响 \[J]. 塑性工程学报, 2023, 30 (6): 151-156.
Deng J D, Han T, Yang Z Y, et al. Influence of electric shock treatment on constructive forming of 316 stainless steel\[J]. Journal of Plasticity Engineering, 2023,30(6): 151-156.
\[2] 孙明月,徐斌,谢碧君,等.大锻件均质化构筑成形研究进展\[J].科学通报,2020,65(27):3044-3058,3043.
Sun M Y, Xu B, Xie B J, et al. Research advances on homogenization manufacturing of heavy components by metal additive forging\[J]. Chinese Science Bulletin, 2020, 65(27): 3044-3058,3043.
\[3] Sun M, Xu B, Li D, et al. Constructing and forming method for preparing homogenized forge pieces\[P].China:EP3275585(A1),2018.
\[4] Xu B, Shao C, Sun M Y. Interface bonding of SA508-3 steel under deformation and high temperature diffusion\[A]. ESAFORM, Proceedings of the 21st International Esaform Conference on Material Forming:Esaform 2018\[C]. Palermo, Italy:AIP Publishing,2018.
\[5] Zhou L Y, Feng S B, Sun M Y, et al. Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding\[J]. Journal of Materials Science and Technology, 2019,35(8):1671-1680.
\[6] Xie B J, Sun M Y, Xu B, et al. Evolution of interfacial characteristics and mechanical properties for 316LN stainless steel joints manufactured by hot-compression bonding\[J]. Journal of Materials Processing Technology, 2020, 283:116733.
\[7] Zhao Y, Xie B J, Zhang J L, et al. Effects of surface roughness on interface bonding performance for 316H stainless steel in hot-compression bonding\[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 771-788.
\[8] Zhang J Y, Xu B, Sun M Y, et al. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys\[J]. Journal of Materials Science & Technology, 2020, 40: 54-63.
\[9] Troitskii O A, Likhtman V I .The anisotropy of the action of electron and gamma radiation on the deformation of zinc single crystals in the brittle state\[J].Soviet Physics Doklady, 1963,8:91.
\[10]Zhou Y Y, Wang Z Q, Zha Z P, et al. Achieve high interfacial bonding strength of Ti/Al laminated composite at room temperature via electropulsing-assisted ultrasonic additive manufacturing\[J]. Metallurgical and Materials Transactions A, 2023, 54(2): 399-404.
\[11]Xu X H, Kang Q X, Liu Y K, et al. Recrystallization behavior of a hot-rolled TiBw/TA15 composite under electropulsing heat treatment\[J]. Journal of Materials Research and Technology, 2023, 26: 5762-5772.
\[12]Jiang Y B, Guan L, Tang G Y, et al. Influence of electropulsing treatment on microstructure and mechanical properties of cold-rolled Mg-9Al-1Zn alloy strip\[J]. Materials Science & Engineering A, 2011, 528(16-17):5627-5635.
\[13]Ku P H, Liang C L, Lin K L. Electromigration-assisted manipulation of microstructure and properties of metals via cyclic direct current stressing treatment\[J]. Materials Characterization, 2021, 174: 110980.
\[14]Wang F, Qian D S, Hua L, et al. Voids healing and carbide refinement of cold rolled M50 bearing steel by electropulsing treatment \[J]. Sci. Rep., 2019, 9: 11315.
|