网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
电冲击预处理下的316不锈钢构筑成形界面愈合行为 模拟与实验研究
英文标题:Simulation and experimental study on interface healing behavior of 316 stainless steel construction forming under electric shock pretreatment
作者:杨桢宇1 2   天1 2 邓加东1 2 3 钱东升2 3 
单位:(1.武汉理工大学 汽车工程学院 湖北 武汉 430070 2.武汉理工大学 现代汽车零部件技术湖北省重点实验室 湖北 武汉 430070  3.武汉理工大学 湖北省材料绿色精密成形工程技术研究中心 湖北 武汉 430070) 
关键词:电冲击 电流密度 构筑成形 界面愈合 316不锈钢 
分类号:TG306
出版年,卷(期):页码:2024,49(9):138-145
摘要:

 为保证构筑界面的高质量连接,提出了在高温变形调控界面愈合的基础上引入电冲击前处理的方法来促进构筑界面的愈合,并通过对316不锈钢高温变形前进行电冲击预处理的仿真和实验,揭示电冲击前处理对构筑界面愈合程度的作用规律。研究结果表明,提高电冲击前处理时的电流密度,构筑成形试样界面的愈合效果逐步提高,但电冲击前处理的电流密度不宜过大,关键在于更大程度地实现构筑界面处的温度梯度变化,产生向中心挤压的热压应力,才能够促进构筑界面产生局部预连接。

 

 In order to ensure the high-quality connection of construction interface, a method of adding electrical shock pretreatment on the basis of high-temperature deformation controling interface healing was proposed to promote the healing of construction interface. Then, by simulations and experiments on the electrical shock pretreatment before high-temperature deformation of 316 stainless steel, the influence of electrical shock pretreatment on the degree of construction interface healing was revealed. The research results show that increasing the current density during electrical shock pretreatment gradually improves the construction interface healing effect of formed sample. However, when selecting the current density for electrical shock pretreatment should not be excessively high. The key is to achieve a greater degree of temperature gradient change at the construction interface and generate thermal compressive stress towards the center, which could promote local pre-connection at the construction interface.

 
基金项目:
基金项目:国家重点研发计划(2018YFA0702900);国家自然科学基金青年科学基金资助项目(51805391);高等学校学科创新引智计划(B17034):教育部创新团队发展计划(IRT_17R83);湖北省科技创新人才及服务专项(2022EJD012)
作者简介:
作者简介:杨桢宇(2000-),男,硕士研究生 E-mail:491805611@qq.com 通信作者:邓加东(1988-),男,博士,副教授 E-mail:dengjd@whut.edu.com
参考文献:

 \[1]  邓加东,韩天,杨桢宇,等. 电冲击处理对316不锈钢构筑成形的影响 \[J]. 塑性工程学报, 2023, 30 (6): 151-156.        


 

Deng J D, Han T, Yang Z Y, et al. Influence of electric shock treatment on constructive forming of 316 stainless steel\[J]. Journal of Plasticity Engineering, 2023,30(6): 151-156.

 

\[2]  孙明月,徐斌,谢碧君,等.大锻件均质化构筑成形研究进展\[J].科学通报,2020,65(27):3044-3058,3043. 

 

Sun M Y, Xu B, Xie B J, et al. Research advances on homogenization manufacturing of heavy components by metal additive forging\[J]. Chinese Science Bulletin, 2020, 65(27): 3044-3058,3043.

 

\[3]  Sun M, Xu B, Li D, et al. Constructing and forming method for preparing homogenized forge pieces\[P].China:EP3275585(A1),2018. 

 

\[4]  Xu B, Shao C, Sun M Y. Interface bonding of SA508-3 steel under deformation and high temperature diffusion\[A]. ESAFORM, Proceedings of the 21st International Esaform Conference on Material Forming:Esaform 2018\[C]. Palermo, Italy:AIP Publishing,2018.

 

\[5]  Zhou L Y, Feng S B, Sun M Y, et al. Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding\[J]. Journal of Materials Science and Technology, 2019,35(8):1671-1680.

 

\[6]  Xie B J, Sun M Y, Xu B, et al. Evolution of interfacial characteristics and mechanical properties for 316LN stainless steel joints manufactured by hot-compression bonding\[J]. Journal of Materials Processing Technology, 2020, 283:116733.

 

\[7]  Zhao Y, Xie B J, Zhang J L, et al. Effects of surface roughness on interface bonding performance for 316H stainless steel in hot-compression bonding\[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 771-788.

 

\[8]  Zhang J Y, Xu B, Sun M Y, et al. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys\[J]. Journal of Materials Science & Technology, 2020, 40: 54-63.

 

\[9]  Troitskii O A, Likhtman V I .The anisotropy of the action of electron and gamma radiation on the deformation of zinc single crystals in the brittle state\[J].Soviet Physics Doklady, 1963,8:91.

 

\[10]Zhou Y Y, Wang Z Q, Zha Z P, et al. Achieve high interfacial bonding strength of Ti/Al laminated composite at room temperature via electropulsing-assisted ultrasonic additive manufacturing\[J]. Metallurgical and Materials Transactions A, 2023, 54(2): 399-404.

 

\[11]Xu X H, Kang Q X, Liu Y K, et al. Recrystallization behavior of a hot-rolled TiBw/TA15 composite under electropulsing heat treatment\[J]. Journal of Materials Research and Technology, 2023, 26: 5762-5772.

 

\[12]Jiang Y B, Guan L, Tang G Y, et al. Influence of electropulsing treatment on microstructure and mechanical properties of cold-rolled Mg-9Al-1Zn alloy strip\[J]. Materials Science & Engineering A, 2011, 528(16-17):5627-5635.

 

\[13]Ku P H, Liang C L, Lin K L. Electromigration-assisted manipulation of microstructure and properties of metals via cyclic direct current stressing treatment\[J]. Materials Characterization, 2021, 174: 110980.

 

\[14]Wang F, Qian D S, Hua L, et al. Voids healing and carbide refinement of cold rolled M50 bearing steel by electropulsing treatment \[J]. Sci. Rep., 2019, 9: 11315.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9