网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
芯模对小弯曲半径管材数控弯曲成形的作用效应
英文标题:Action effects of mandrel on numerical control bending of tube with small bending radius
作者:尚文瑄1 向军淮1 方军2 万涛2 李旻纯1 王克鲁3 鲁世强3 
单位:1. 江西科技师范大学 材料与能源学院 2. 江西科技师范大学 信息与机电工程学院 江西 南昌 330038  3. 南昌航空大学 航空制造工程学院 
关键词:21-6-9高强不锈钢管 小弯曲半径 芯模类型 芯模伸出量 芯模直径 
分类号:TG386
出版年,卷(期):页码:2024,49(11):37-46
摘要:

 为了揭示芯模对小弯曲半径管材数控弯曲成形的作用效应,根据管材数控弯曲成形过程中模具与管材之间的几何位置关系,推导出了芯模伸出量和芯模直径的解析模型,建立了小弯曲半径高锰高氧奥氏体不锈钢管数控弯曲成形有限元模型,并通过实验验证了模型的可靠性;然后,利用所建立的有限元模型模拟分析了芯模类型、芯模伸出量及芯模直径对小弯曲半径高强不锈钢管数控弯曲成形切向应力应变分布、壁厚增厚、壁厚减薄和截面畸变的影响。结果表明:半球式芯模可以获得最佳的成形性能;随着芯模伸出量、芯模直径的增加,壁厚减薄率增加,截面畸变率减小,而壁厚增厚率变化不明显;获得了合适的芯模伸出量和芯模直径,范围分别为0.5~1.5 mm和Φ5.23~Φ5.43 mm

 In order to reveal the action effect of mandrel on numerical control(NC) bending tube with small bending radius, according to the geometric position relationship between dies and tube in the NC bending process of tube, the analytical models of mandrel extension amount and mandrel diameter were deduced, the finite element (FE) model of NC bending for 21-6-9 high strength stainless steel tube with small bending radius was built, and the reliability of the model was verified by experiment. Then, the influences of mandrel types, mandrel extension amount and mandrel diameter on tangential stress/strain distribution, wall thickness thickening, wall thickness thinning and cross-section distortion of high strength stainless steel tube with small bending radius in NC bending were analyzed by using the FE model. The results show that the hemispherical mandrel can obtain the best forming performance. With the increasing of mandrel extension amount and mandrel diameter, the wall thickness thinning rate increases and the cross-section distortion rate decreases, while the wall thickness thickening rate does not change significantly. In addition, the ranges of suitable mandrel extension amount and mandrel diameter are 0.5-1.5 mm and Φ5.23-Φ5.43 mm, respectively.

基金项目:
江西省自然科学基金资助项目(20192BAB216022);江西省教育厅科学技术研究项目(GJJ201126)
作者简介:
作者简介:尚文瑄(1999-),女,硕士研究生 E-mail:1344871703@qq.com 通信作者:方军(1984-),男,博士,副教授 E-mail:fangjun020j13@163.com
参考文献:

 [1]郭训忠, 陶杰, 王辉. 航空导管先进成形技术的研究进展[J]. 南京航空航天大学学报, 2020, 52(1): 12-23.


Guo X Z, Tao J, Wang H. Research progress on advanced forming technology for aviation tube[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(1): 12-23.


[2]Yang H, Li H, Zhang Z Y, et al. Advances and trends on tube bending forming technologies[J]. Chinese Journal of Aeronautics, 2012, 25(1): 1-12.


[3]付颖, 张昭, 杨恒, . 高强小弯曲半径钛管热场辅助数控弯曲工艺参数确定性优化[J]. 塑性工程学报, 2021, 28(4): 60-69.


Fu Y, Zhang Z, Yang H, et al. Process parameters deterministic optimization of heat field-assisted numerical control bending for titanium tube with high strength and small bending radius[J]. Journal of Plasticity Engineering, 2021, 28(4): 60-69.


[4]Fang J, Lu S Q, Wang K L, et al. Deformation behaviors of 21-6-9 stainless steel tube numerical control bending under different friction conditions[J]. Journal of Central South University, 2015, 22(8): 2864-2874.


[5]Jiang L F, Zhang S Y, Wang Y Q, et al. Research on bending forming method of large diameter-thickness ratio thin-walled tubes for aerospace[J]. The International Journal of Advanced Manufacturing Technology, 2019,102(9-12): 3027-3049.


[6]欧阳芳,鲁世强,方军,.几何参数对变弹性模量条件下21-6-9管绕弯成形质量的影响[J]. 塑性工程学报, 2020, 27(1): 27-37.


Ouyang F, Lu S Q, Fang J, et al. Effect of geometrical parameters on forming quality of 21-6-9 tube in rotary draw bending under condition of variable elastic modulus[J]. Journal of Plasticity Engineering, 2020, 27(1): 27-37.


[7]Fang J, Liang C, Lu S Q, et al. Effect of geometrical parameters on forming quality of high-strength TA18 titianium alloy tube in numerical control bending[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(2): 309-318.


[8]Safdarian R. Investigation of tube fracture in the rotary draw bending process using experimental and numerical methods[J]. International Journal of Material Forming, 2019,13(prepublish):1-24.


[9]Safdarian R. Experimental and numerical investigation of wrinkling and tube ovality in the rotary draw bending process[J]. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 2019, 233(16):5568-5584.


[10]Ancellotti S, Benedetti M, Fontanari V, et al. Rotary draw bending of rectangular tubes using a novel parallelepiped elastic mandrel[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5-8): 1089-1103.


[11]Zhu Y X, Liu Y L, Li H P, et al. Comparison between the effects of PVC mandrel and mandrel-cores die on the forming quality of bending rectangular H96 tube[J]. International Journal of Mechanical Sciences, 2013, 76:132-143.


[12]王子昂. 管材冷弯工艺中无球芯棒改进方法研究[D]. 上海:上海交通大学, 2020.


Wang Z A. Research on the Improvement Method of Non-ball Mandrel in Tube Cold Bending Process [D]. Shanghai: Shanghai Jiao Tong University, 2020.


[13]Li H, Yang H, Zhan M, et al. Role of mandrel in NC precision bending process of thin-walled tube[J]. International Journal of Machine Tools and Manufacturing, 2007, 47(7-8): 1164-1175.


[14]李恒. 多模具约束下薄壁管数控弯曲成形过程失稳起皱行为[D]. 西安: 西北工业大学, 2007.


LI H. Research on Wrinkling in NC Bending of Thin-walled Tube in Muti-dies Constraints [D]. Xian: Northwestern Polytechnical University, 2007.


[15]蒋兰芳, 王亚群, 林姚辰, . 芯棒参数对超薄壁管数控绕弯成形质量的影响[J]. 西安交通大学学报, 2020, 54(4): 144-154.


Jiang L F, Wang Y Q, Lin Y C, et al. Effect of mandrel parameters on NC RDB forming quality of ultra-thin-walled tube[J]. Journal of Xian Jiaotong University, 2020, 54(4): 144-154.


[16]Xu J, Yang H, Li H, et al. Significance-based optimization of processing parameters for thin-walled aluminum alloy tube NC bending with small bending radius[J]. Transactions of Nonferrous Metals Society of China, 2012,22(1): 147-156.


[17]Fang J, Lu S Q, Wang K L, et al. Effect of mandrel on cross-section quality in numerical control bending process of stainless steel 2169 small diameter tube[J]. Advances in Materials Science and Engineering, 2013, 2013:1-9.


[18]方军. 21-6-9高强不锈钢管数控绕弯成形规律研究[D]. 南京: 南京航天航空大学, 2015.


Fang J.Study on Forming Rules of 21-6-9 High-strength Stainless Steel Tubes in NC Rotary Draw Bending Process[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.


[19]HB 4-552002, 导管弯曲半径[S].


HB 4-552002, Radius for tube cook[S].


[20]唐金星. 多模具约束下管材数控弯曲成形数值模拟研究[D]. 南昌: 南昌航空大学, 2015.


Tang J X. Numerical Simulation Study of Tube NC Bending Forming Under Mulit-die Constrains[D]. Nanchang: Nanchang Hangkong University, 2015.


[21]Fang J, Lu S Q, Liang C, et al. Mandrel role in numerical control rotary draw bending process of TA18 high strength titanium alloy tube[A]. 2019 5th International Conference on Applied Materials and Manufacturing Technology(ICAMMT 2019)[C]. Singapore,2019.


[22]Fang J, Lu S Q, Liang C, et al. Influences of mandrel types on forming quality of TA18 high strength tube in numerical control bending[A]. 2019 5th International Conference on Applied Materials and Manufacturing Technology(ICAMMT 2019)[C]. Singapore,2019.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9