网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
樟子松压缩过程中的力学性能及裂纹扩展
英文标题:Mechanical properties and crack propagation for camphor pine during compression process
作者:李震 陶鑫 赵召才 孙恒阳 雷曌 
单位:内蒙古科技大学 机械工程学院 
关键词:樟子松 缺陷 顺纹压缩 极限载荷 裂纹 
分类号:TK6
出版年,卷(期):页码:2024,49(11):87-93
摘要:

 为了分析不同缺陷樟子松在压缩过程中的力学性能及裂纹扩展情况,在实际压缩试验的基础上,建立了樟子松ABAQUS仿真模型。研究表明,无缺陷的樟子松试样在50.60 s时达到极限载荷26.70 kN,缺陷大小为Φ4、Φ6、Φ8和Φ10 mm时樟子松试样的极限载荷分别为17.5315.6311.8110.49 kN。为了预测樟子松在压缩过程中的裂纹情况以及力学性能,在ABAQUS中建立木材本构模型模拟樟子松试样的压缩过程,仿真结果可以很好地反映试样的裂纹情况,并且无缺陷试样极限载荷的仿真值与试验数据的绝对误差不超过0.2 kN,验证了本构模型的有效性。通过试验与仿真相结合的方法,在已知缺陷大小的情况下很好地预测樟子松压缩过程中的裂纹扩展情况和极限载荷,提高在役木材检测的效率。

 In order to analyze the mechanical properties and crack propagation of camphor pine with different defects during the compression process, an ABAQUS simulation model of camphor pine was established on the basis of actual compression test. The research results show that the ultimate load of the camphor pine specimen without defects reaches 26.70 kN at 50.60 s, and the ultimate loads of the specimens with the defect size of Φ4, Φ6, Φ8 and Φ10 mm are 17.53, 15.63, 11.81 and 10.49 kN, respectively. In order to predict the crack condition and the mechanical properties of camphor pine in the compression process, a wood constitutive model was established in ABAQUS to simulate the compression process of camphor pine specimen, and the results of simulation can well reflect the crack condition of specimen, and the absolute error of ultimate load between the simulation values and the test data of the specimens with out defects does not exceed 0.2 kN, which verifies the validity of the constitutive model. By combining test and simulation, the crack propagation condition and the ultimate load of camphor pine with known defect sizes during the compression process can be well predicted, which improves the inspection efficiency of in-service wood. 

基金项目:
国家自然科学基金资助项目(52366018);内蒙古自治区自然科学基金资助项目(2020LH05020)
作者简介:
作者简介:李震(1973-),男,博士,教授 E-mail:lizhen_730106@126.com 通信作者:陶鑫(1998-),男,硕士研究生 E-mail:1848932887@qq.com
参考文献:

 [1]李震,张冬会,张鑫宇,.香菇菌渣致密成型过程中颗粒黏结和断裂研究[J].锻压技术,2023,48(12):188-195.


Li Z, Zhang D H, Zhang X Y,et al. Study on particle adhesion and fracture during the dense forming process of mushroom residue [J]. Forging & Stamping Technology, 2023,48(12): 188-195.


[2]Hackspiel C, Borst K D, Lukacevic M. A numerical simulation tool for wood grading: Modelvalidation and parameter studies[J]. Wood Science and Technology,2014,48(3):651-669.


[3]Bano V, Arriaga F, Soilan A, et al.Prediction of bending load capacity of timber beams using afinite element method simulation of knots and grain deviation[J].Biosystems Engineering,2011,109(4):241-249.


[4]谢启芳,杜彬,李双,.残损古建筑木结构燕尾榫节点抗震性能试验研究[J].振动与冲击,2015,34(4):165-170,210.


Xie Q F, Du B, Li S, et al. Experimental study on seismic performance of damaged wooden structures with dovetail joints in ancient architecture [J]. Journal of Vibration and Shock, 2015, 34(4):165-170,210.


[5]King W S, Yen J, Yen Y. Joint characteristics of traditional Chinese wooden frames[J].Engineering Structures,1996,18(8):635-644.


[6]张雷,杨娜.均布荷载作用下榫卯连接木梁的解析解[J].工程力学,2017(7):51-60,78.


Zhang L, Yang N. Analytical solution of mortise and tenon connected wooden beams under uniformly distributed loads [J]. Engineering Mechanics, 2017 (7) :51-60,78.


[7]任宁,刘一星,巩翠芝.木材微观构造与拉伸断裂的关系[J].东北林业大学学报,2008(2):33-35.


Ren N, Liu Y X, Gong C Z. The relationshipbetween wood microstructure and tensile fracture [J].Journal of Northeast Forestry University, 2008 (2): 33-35.


[8]Yang N, Zhang L. Investigation of elastic constants and ultimate strengths of Korean pine from compression and tension tests[J].Journal of Wood Science, 2018,64(2):85-96.


[9]王忠铖. 藏青杨古建木材力学性质试验研究及预测方法[D]. 北京:北京交通大学,2023.


Wang Z C. Experimental Study and Predictio Method of Mechanical Properties of Tibetan Yanggujian Wood [D]. Beijing:Beijing Jiaotong University, 2023.


[10]谷雨. 腐朽对古木建筑构件力学性能的影响[D].南京:东南大学,2017.


Gu Y. The Influence of Decay on the Mechanical Properties of Ancient Wooden Building Components [D]. Nanjing: Southeast University, 2017.


[11]Zhang J, Xu Q F, Xu Y X, et al. A study on the residual bending bearing capacity of existing wood components based on the correlation between non-destructive testing and wood mechanical properties[J]. Journal of Zhejiang University Science A (Applied Physics & Engineering), 2015,16 (7): 541-550.


[12]GB/T 1927.112022,无疵小试样木材物理力学性质试验方法第11部分:顺纹抗压强度测定[S].


GB/T 1927.112022Test methods for physical and mechanical properties of small clear wood specimensPart 11: Determination of ultimate stress in compression parallel to grain [S].


[13]李馨然,林经康,安昕,.热压工艺参数对杉木压缩木回复率与力学性能的影响[J].林业工程学报,2023,8(5):37-45.


Li X R, Lin J K, An X,et al.Effects of hot pressing process parameters on compression wood recovery and mechanical properties of fir[J]. Journal of Forestry Engineering,2023,8(5):37-45.


[14]张雷. 木材的力学性质试验研究及数值模拟方法[D]. 北京: 北京交通大学,2018.


Zhang L.Experimental Research and Numerical Simulation Methods on the Mechanical Properties of Wood[D]. Beijing:Beijing Jiaotong University, 2018.


[15]张慎,陈州,李霆,.基于ABAQUS的木材本构模型及试验验证[J/OL].工程力学,1-15[2024-09-11].http://kns.cnki.net/kcms/detail/11.2595.O3.20230327.0919.004. html.


Zhang S, Chen Z, Li T,et al. Wood constitutive model and experimental verification based on ABAQUS [J/OL]. Engineering Mechanics: 1-15[2024-09-11].http://kns.cnki.net/kcms/detail/11.2595.O3.20230327.0919.004.html.


[16]徐博瀚,蔡竞. 木材强度准则的研究进展[J]. 土木工程学报, 2015,48(1):64-73.


Xu B H, Cai J. Research progress on wood strength criteria[J]. China Civil Engineering Journal, 2015,48(1):64-73.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9