网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
304不锈钢的热变形行为及热加工图
英文标题:Hot deformation behavior and hot processing map on 304 stainless steel
作者:张志红1 刘洁1 2 
单位:1.晋中信息学院 智能工程学院 2.太原科技大学 材料科学与工程学院 
关键词:304不锈钢 热压缩 真应力-真应变曲线 本构模型 热加工图 
分类号:TG335.8
出版年,卷(期):页码:2024,49(11):202-209
摘要:

 采用Gleeble-3800试验机对304不锈钢进行热压缩试验,变形温度为900~1200 ℃,应变速率为0.01~1 s-1,热压缩试验完成后迅速水冷。对304不锈钢的真应力-真应变曲线进行分析,结果表明,304不锈钢的真应力-真应变曲线的类型包括动态回复+动态再结晶曲线和动态再结晶曲线,并且流动应力随变形温度的升高和应变速率的降低而减小。根据真应力-真应变数据构建了应变补偿的Arrhenius本构模型,相关系数为0.9932,相对误差为6.849%。此外,根据真应力-真应变数据,确定了不同温度下各应变速率的功率耗散因子η和失稳参数ξ(ε·),进而构建了304不锈钢的热加工图。根据热加工图确定了304不锈钢的最佳加工范围为变形温度为940~1200 ℃、应变速率为0.01~1 s-1

 The hot compression test of 304 stainless steel was carried out by Gleeble-3800 testing machine under the deformation temperature of 900-1200 and the strain rate of 0.01-1 s-1, and it was quickly water-cooled after the hot compression test. The analysis results of the true stress-true strain curve for 304 stainless steel shows that the types of true stress-true strain curves include dynamic recovery+dynamic recrystallization curve and dynamic recrystallization curve, and the flow stress decreases with the increasing of deformation temperature and the decreasing of strain rate. A strain-compensated Arrhenius constitutive model is constructed based on the true stress-true strain data, with the correlation coefficient of 0.9932 and the relative error of 6.849%. In addition, based on the true stress-true strain data, power dissipation factor η and the instability parameter ξ(ε·)of each strain rate at different temperatures are determined, and then the hot processing map of 304 stainless steel is constructed. According to the hot processing map, the optimal processing range for 304 stainless steel is the temperature of 940-1200 and the strain rate of 0.01-1 s-1.

基金项目:
2023年山西省高等学校教学改革创新项目(J20231722);2023年山西省高等学校教学改革创新项目(J20231720);2022年山西省教育科学“十四五”规划项目(GH-220338);2023年山西省高等学校科技创新项目(2023L513)
作者简介:
作者简介:张志红(1985-),女,硕士,副教授 E-mail:574055042@qq.com
参考文献:

[1]赵晓东.304不锈钢热变形条件下动态再结晶行为研究[D].太原:太原科技大学,2009.


Zhao X D.Study on Dynamic Recrystallization Behavior of 304 Stainless Steel Under Thermal Deformation Conditions[D]. Taiyuan: Taiyuan University of Science and Technology,2009.

[2]肖云鹤,刘峰斌,阎红娟,等.表面粗糙度对304不锈钢空蚀腐蚀联合作用的影响[J].润滑与密封,2024,49(5):136-143.

Xiao Y H, Liu F B, Yan H J, et al. Effect of surface roughness on joint action of cavitation corrosion of 304 stainless steel [J]. Lubrication Engineering,2024,49(5):136-143.

[3]刘子放,苑泽伟,朱磊,等.超声波滚压强化对304不锈钢表面质量的影响[J].现代制造工程,2023(11):86-93.

Liu Z F, Yuan Z W, Zhu L, et al. Effect of ultrasonic rolling strengthening on surface quality of 304 stainless steel [J]. Modern Manufacturing Engineering, 2023(11):86-93.

[4]秦明军,孙文磊,管文虎,等.304不锈钢表面激光熔覆Inconel625涂层组织与性能分析[J/OL].表面技术, 1-14[2024-07-26]. http://kns.cnki.net/kcms/detail/50.1083.tg.20231108.0

910.002.html.

Qin M J, Sun W L, Guan W H, et al. Microstructure and properties of Inconel625 coating on 304 stainless steel surface by laser cladding [J/OL]. Surface Technology, 1-14[2024-07-26]. http://kns.cnki.net/kcms/detail/50.1083.tg.20231108.0910.002.html.

[5]孙文伟,张楚函,赵亚军,等.奥氏体不锈钢的热压缩本构方程及动态再结晶行为[J].机械工程材料,2022,46(6):49-56,63.

Sun W W, Zhang C H, Zhao Y J, et al. Thermal compression constitutive equation and dynamic recrystallization behavior of austenitic stainless steel [J]. Materials for Mechanical Engineering,2022,46(6):49-56,63.

[6]杨东,姜紫薇,郑志军.高温高应变率下钛合金Ti6Al4V的动态力学行为及本构关系[J].高压物理学报,2024,38(1): 77-87.

Yang D, Jiang Z W, Zheng Z J. Dynamic behavior and constitutive relationship of titanium alloy Ti6Al4V under high temperature and high strain rate [J]. Chinese Journal of High Pressure Physics, 2024,38(1): 77-87.

[7]谭毅,杨书仪,孙要兵,等.ZL114A铝合金本构关系与失效准则参数的确定[J].爆炸与冲击, 2024,44(1):88-107.

Tan Y, Yang S Y, Sun Y B, et al. Determination of constitutive relation and fracture criterion parameters for ZL114A aluminum alloy[J]. Explosion and Shock Waves, 2024,44(1):88-107.

[8]王敬忠,丁凯伦,杨西荣,等.Ti-62A合金动态软化速率异常的热力学解释及其应变补偿本构方程[J].材料研究学报,2020,34(6):401-409.

Wang J Z, Ding K L, Yang X R, et al. Thermodynamic explanation of dynamic softening rate anomaly of Ti-62A alloy and its strain compensation constitutive equation [J]. Journal of Materials Research, 2020,34(6):401-409.

[9]白杰,霍元明,何涛,等.基于GA-Arrhenius本构模型的EA4T钢高温变形行为[J].锻压技术,2022,47(11):246-253.

Bai J, Huo Y M, He T, et al. High-temperature deformation behavior for EA4T steel based on GA-Arrhenius constitutive model[J]. Forging & Stamping Technology,2022,47(11):246-253.

[10]毛欢,韩莹莹.基于应变补偿Arrhenius模型的TC20钛合金本构方程研究[J].铸造技术,2018,39(9):1939-1942,1947.

Mao H, Han Y Y. Study on constitutive equations of TC20 alloy based on strain-compensated arrhenius model[J]. Foundry Technology, 2018,39(9):1939-1942,1947.

[11]Zhao G H, Tian Y H, Song Y H,et al. A comparative study of three constitutive models concerning thermo-mechanical behavior of Q345 steel during hot deformation[J]. Crystals,2022, 12(9):1262-1262.

[12]焦永振,铸态2.25Cr1Mo0.25V钢热变形过程中组织演变的研究[D].太原:太原科技大学,2012.

Jiao Y Z.Microstructure Evolution of As-cast 2.25Cr1Mo0.25V Steel During Hot Deformation[D]. Taiyuan:Taiyuan University of Science and Technology,2012.

[13]王智祥,刘学峰,谢建新.AZ91镁合金高温变形本构关系[J],金属学报,2008,44(11):1378-1383.

Wang Z X,Liu X F,Xie J X.Constitutive relationship of hot deformation of AZ91 magnesium alloy[J].Acta Metallurgica Sinica,2008,44(11):1378-1383.

[14]孙红磊,殷璟,马瑞,等.HPb59-1铜合金高温流变行为的本构模型[J].塑性工程学报,2022,29 (7): 157-164.

Sun H L,Yin J,Ma R,et al.Constitutive model of high temperature rheological behavior of HPb59-1 copper alloy[J].Journal of Plasticity Engineering,2022,29 (7): 157-164.

[15]Song Y H, Li Y G, Li H Y, et al. Hot deformation and recrystallization behavior of a new nickel-base superalloy for ultra-supercritical applications[J].Journal of Materials Research and Technology, 2022,19:4308-4324. 

[16]Zhang J B, Wu C J,Peng Y Y, et al.Hot compression deformation behavior and processing maps of ATI 718 Plus superalloy[J].Journal of Alloys and Compounds,2020,835(prepublish).

[17]Chen X X, Zhao G Q, Zhao X T, et al. Constitutive modeling and microstructure characterization of 2196 Al-Li alloy in various hot deformation conditions[J]. Journal of Manufacturing Processes,2020,59:326-342. 

[18]Wang S, Hou L G, Luo J R, et al. Characterization of hot workability in AA 7050 aluminum alloy using activation energy and 3D processing map[J]. Journal of Materials Processing Technology,2015,225: 110-121.

[19]Qin J, Zhang Z, Chen X G. Evolution of activation energy during hot deformation of Al-15%B4C composites containing Sc and Zr[J]. AIMS Materials Science,2019,6(4): 484-497.

[20]Peng X Y, Su W S, Xiao D, et al. Investigation on hot workability of homogenized Al-Zn-Mg-Cu alloy based on activation energy and processing map[J].JOM,2018, 70(6):993-999. 

[21]Li X, Hou L F, Wei Y H,et al. Constitutive equation and hot processing map of a nitrogen-bearing martensitic stainless steel[J].Metals,2020,10(11):1502-1502.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9