[1]赵晓东.304不锈钢热变形条件下动态再结晶行为研究[D].太原:太原科技大学,2009.
Zhao X D.Study on Dynamic Recrystallization Behavior of 304 Stainless Steel Under Thermal Deformation Conditions[D]. Taiyuan: Taiyuan University of Science and Technology,2009.
[2]肖云鹤,刘峰斌,阎红娟,等.表面粗糙度对304不锈钢空蚀腐蚀联合作用的影响[J].润滑与密封,2024,49(5):136-143.
Xiao Y H, Liu F B, Yan H J, et al. Effect of surface roughness on joint action of cavitation corrosion of 304 stainless steel [J]. Lubrication Engineering,2024,49(5):136-143.
[3]刘子放,苑泽伟,朱磊,等.超声波滚压强化对304不锈钢表面质量的影响[J].现代制造工程,2023(11):86-93.
Liu Z F, Yuan Z W, Zhu L, et al. Effect of ultrasonic rolling strengthening on surface quality of 304 stainless steel [J]. Modern Manufacturing Engineering, 2023(11):86-93.
[4]秦明军,孙文磊,管文虎,等.304不锈钢表面激光熔覆Inconel625涂层组织与性能分析[J/OL].表面技术, 1-14[2024-07-26]. http://kns.cnki.net/kcms/detail/50.1083.tg.20231108.0
910.002.html.
Qin M J, Sun W L, Guan W H, et al. Microstructure and properties of Inconel625 coating on 304 stainless steel surface by laser cladding [J/OL]. Surface Technology, 1-14[2024-07-26]. http://kns.cnki.net/kcms/detail/50.1083.tg.20231108.0910.002.html.
[5]孙文伟,张楚函,赵亚军,等.奥氏体不锈钢的热压缩本构方程及动态再结晶行为[J].机械工程材料,2022,46(6):49-56,63.
Sun W W, Zhang C H, Zhao Y J, et al. Thermal compression constitutive equation and dynamic recrystallization behavior of austenitic stainless steel [J]. Materials for Mechanical Engineering,2022,46(6):49-56,63.
[6]杨东,姜紫薇,郑志军.高温高应变率下钛合金Ti6Al4V的动态力学行为及本构关系[J].高压物理学报,2024,38(1): 77-87.
Yang D, Jiang Z W, Zheng Z J. Dynamic behavior and constitutive relationship of titanium alloy Ti6Al4V under high temperature and high strain rate [J]. Chinese Journal of High Pressure Physics, 2024,38(1): 77-87.
[7]谭毅,杨书仪,孙要兵,等.ZL114A铝合金本构关系与失效准则参数的确定[J].爆炸与冲击, 2024,44(1):88-107.
Tan Y, Yang S Y, Sun Y B, et al. Determination of constitutive relation and fracture criterion parameters for ZL114A aluminum alloy[J]. Explosion and Shock Waves, 2024,44(1):88-107.
[8]王敬忠,丁凯伦,杨西荣,等.Ti-62A合金动态软化速率异常的热力学解释及其应变补偿本构方程[J].材料研究学报,2020,34(6):401-409.
Wang J Z, Ding K L, Yang X R, et al. Thermodynamic explanation of dynamic softening rate anomaly of Ti-62A alloy and its strain compensation constitutive equation [J]. Journal of Materials Research, 2020,34(6):401-409.
[9]白杰,霍元明,何涛,等.基于GA-Arrhenius本构模型的EA4T钢高温变形行为[J].锻压技术,2022,47(11):246-253.
Bai J, Huo Y M, He T, et al. High-temperature deformation behavior for EA4T steel based on GA-Arrhenius constitutive model[J]. Forging & Stamping Technology,2022,47(11):246-253.
[10]毛欢,韩莹莹.基于应变补偿Arrhenius模型的TC20钛合金本构方程研究[J].铸造技术,2018,39(9):1939-1942,1947.
Mao H, Han Y Y. Study on constitutive equations of TC20 alloy based on strain-compensated arrhenius model[J]. Foundry Technology, 2018,39(9):1939-1942,1947.
[11]Zhao G H, Tian Y H, Song Y H,et al. A comparative study of three constitutive models concerning thermo-mechanical behavior of Q345 steel during hot deformation[J]. Crystals,2022, 12(9):1262-1262.
[12]焦永振,铸态2.25Cr1Mo0.25V钢热变形过程中组织演变的研究[D].太原:太原科技大学,2012.
Jiao Y Z.Microstructure Evolution of As-cast 2.25Cr1Mo0.25V Steel During Hot Deformation[D]. Taiyuan:Taiyuan University of Science and Technology,2012.
[13]王智祥,刘学峰,谢建新.AZ91镁合金高温变形本构关系[J],金属学报,2008,44(11):1378-1383.
Wang Z X,Liu X F,Xie J X.Constitutive relationship of hot deformation of AZ91 magnesium alloy[J].Acta Metallurgica Sinica,2008,44(11):1378-1383.
[14]孙红磊,殷璟,马瑞,等.HPb59-1铜合金高温流变行为的本构模型[J].塑性工程学报,2022,29 (7): 157-164.
Sun H L,Yin J,Ma R,et al.Constitutive model of high temperature rheological behavior of HPb59-1 copper alloy[J].Journal of Plasticity Engineering,2022,29 (7): 157-164.
[15]Song Y H, Li Y G, Li H Y, et al. Hot deformation and recrystallization behavior of a new nickel-base superalloy for ultra-supercritical applications[J].Journal of Materials Research and Technology, 2022,19:4308-4324.
[16]Zhang J B, Wu C J,Peng Y Y, et al.Hot compression deformation behavior and processing maps of ATI 718 Plus superalloy[J].Journal of Alloys and Compounds,2020,835(prepublish).
[17]Chen X X, Zhao G Q, Zhao X T, et al. Constitutive modeling and microstructure characterization of 2196 Al-Li alloy in various hot deformation conditions[J]. Journal of Manufacturing Processes,2020,59:326-342.
[18]Wang S, Hou L G, Luo J R, et al. Characterization of hot workability in AA 7050 aluminum alloy using activation energy and 3D processing map[J]. Journal of Materials Processing Technology,2015,225: 110-121.
[19]Qin J, Zhang Z, Chen X G. Evolution of activation energy during hot deformation of Al-15%B4C composites containing Sc and Zr[J]. AIMS Materials Science,2019,6(4): 484-497.
[20]Peng X Y, Su W S, Xiao D, et al. Investigation on hot workability of homogenized Al-Zn-Mg-Cu alloy based on activation energy and processing map[J].JOM,2018, 70(6):993-999.
[21]Li X, Hou L F, Wei Y H,et al. Constitutive equation and hot processing map of a nitrogen-bearing martensitic stainless steel[J].Metals,2020,10(11):1502-1502.
|