网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于数值流形的瞬态温度场的预测与校正计算方法
英文标题:Prediction and correction calculation method on transient temperature field based on numerical manifold
作者:何伟健1 章争荣1 2 
单位:1.广东工业大学 材料与能源学院 2.广东省金属成形加工与锻压装备技术重点实验室 
关键词:数值流形 温度场 黄金分割比 预测 校正 修正因子 
分类号:TG301
出版年,卷(期):页码:2024,49(11):241-247
摘要:

 提出了一种基于数值流形的瞬态温度场计算方法。推导了瞬态温度场的数值流形离散格式,通过插值法计算每一时间步的第1个预测步,以每一时间步的第1个预测步为基础,加入黄金分割比优选法和修正因子对预测步进行校正,讨论了不同修正因子的选择和变化判断依据,对比了不同方法对计算校正速率的影响。结果表明:插值法可加快温度场的预测,通过不同修正因子系数的计算证明了黄金分割比例系数的优越性,修正因子的变化判断依据采用相对值时比采用绝对值时的校正速率更快且更稳定,校正过程不易出现震荡波动现象;最后以金属镦粗为例,将计算结果与Deform有限元软件的结果进行对比,说明了预测与校正方法的可行性与准确性。

 A transient temperature field calculation method based on numerical manifolds was proposed, and the discrete format of numerical manifold for transient temperature field was deduced. Then, the first prediction step of each time step was calculated by the interpolation method, and based on the first prediction step of each time step, the prediction step was corrected by adding the golden section ratio preference method and the correction factor. Furthermore, the selection of different correction factors and the judgement basis of change were discussed, and the influences of different methods on the calculation correction rate were compared. The results show that the interpolation method can speed up the prediction of temperature field, and the superiority of the golden section coefficient is proved by the calculation of different correction factor coefficients. The judgement basis of the change in correction factors is based on the fact that the correction rate is faster and more stable when using relative values than that when using absolute values, and the correction process is less prone to oscillation and fluctuation phenomenon. Finally, for metal upsetting, the calculation result and the prediction result obtained by finite element software Deform are compared to illustrate the feasibility and accuracy of the prediction and correction method.

基金项目:
国家自然科学基金面上项目(52175294)
作者简介:
作者简介:何伟健(1998-)男,硕士研究生 E-mail:2112102110@mail2.gdut.edu.cn 通信作者:章争荣(1969-),男,博士,教授 E-mail:zzr@gdut.edu.com
参考文献:

 [1]金飞翔,董奇,徐梦洁,等. 基于有限元铝合金复杂精密锻造模具失效分析及优化[J]. 锻压技术,2023,48(2):180-184. 


Jin F X,Dong Q,Xu M J,et al. Failure analysis and optimization on aluminum alloy complex precision forging mold based on finite element [J]. Forging & Stamping Technology,2023,48(2):180-184.

[2]于志刚,胡振超,宋立志,等.井下分布式光纤井筒温度校正技术研究与试验[J].钻采工艺,2022,45(6):70-74.

Yu Z G, Hu Z C, Song L Z,et al. Research and test on downhole distributed fibre-optic wellbore temperature correction technology[J]. Drilling Process,2022,45(6):70-74.

[3]张宇娇,汪振亮,徐彬昭,等.瞬态电磁-温度场耦合计算中自适应时间步长研究[J].电工技术学报,2018,33(19):4468-4475.

Zhang Y J, Wang Z L, Xu B Z, et al. Research on adaptive time step in transient electromagnetic-temperature field coupling calculation[J]. Journal of Electrotechnology,2018,33(19):4468-4475.

[4]陈颖,任登凤,韩玉阁.一种基于有限测点数据的地面目标瞬态温度场快速预测方法[J].红外与激光工程,2023,52(11):180-195.

Chen Y, Ren D F, Han Y G. A fast prediction method of transient temperature field of ground target based on limited measurement point data[J]. Infrared and Laser Engineering,2023,52(11):180-195.

[5]Wang X, Kong C, Ren M H, et al. Research on temperature field prediction method in an aero-engine combustor with high generalization ability[J].Applied Thermal Engineering,2024,239:122042.

[6]石根华,王秋生.《数值流形法》序[J].岩石力学与工程学报,2020,39(4):865-866. 

Shi G H, Wang Q S. Preface to the Numerical Flow Method[J]. Journal of Rock Mechanics and Engineering,2020,39(4):865-866.

[7]张湘伟,章争荣,吕文阁,等.数值流形方法研究及应用进展[J].力学进展,2010,40(1):1-12. 

Zhang X W, Zhang Z R, Lyu W G, et al. Progress in the study and application of numerical flow shape method[J]. Advances in Mechanics,2010,40(1):1-12.

[8]章争荣,张湘伟,吕文阁.薄板弯曲分析的16节点流形单元[J].塑性工程学报,2009,16(4):29-34. 

Zhang Z R, Zhang X W, Lyu W G. A 16-node manifold cell for bending analysis of thin plates[J]. Journal of Plasticity Engineering,2009,16(4):29-34.

[9]Zhang L M, Zheng H, Liu F.MLS-based numerical manifold method for steady-state three-dimensional heat conduction problems of functionally graded materials[J].Computers and Mathematics with Applications,2023,144:124-140.

[10]陈孟,黄庆,翁羽,等. 自然对流换热系数计算方法研究[A].第十七届全国反应堆结构力学会议论文集[C]. 上海,2012. 

Chen M, Huang Q, Weng Y, et al. Research on the calculation method of natural convection heat transfer coefficient[A]. Proceedings of the 17th National Conference on Structural Mechanics of Reactors[C]. Shanghai,2012.

[11]冯启高,王振军.金属材料半固态挤压工艺的有限元分析[J].机械设计与制造,2005(8):16-18.

Feng Q G, Wang Z J. Finite element analysis of semi-solid extrusion process for metallic materials[J]. Mechanical Design and Manufacturing,2005(8):16-18.

[12]胡育勇. 风机主轴制动器摩擦副热-力耦合有限元分析[D]. 南昌:南昌大学,2015.

Hu Y Y. Thermal-force Coupled Finite Element Analysis of the Friction Vice of Wind Turbine Spindle Brake[D]. Nanchang:Nanchang University,2015.

[13]Ji X L, Zhang H H, Han S Y.Transient heat conduction modeling in continuous and discontinuous anisotropic materials with the numerical manifold method[J].Engineering Analysis with Boundary Elements,2023,155:518-527.

[14]Duda P.Finite element method formulation in polar coordinates for transient heat conduction problems[J].Journal of Thermal Science,2016,25(2):188-194.

[15]Zabolotskii A V. Modeling of cooling of a steel-teeming ladle[J]. Journal of Engineering Physics and Thermophysics,2013,86(1):205-210.

[16]王岩,陈俊杰.对流换热系数测量及计算方法[J].液压与气动,2016(4):14-20.

Wang Y, Chen J J. Measurement and calculation method of convective heat transfer coefficient[J]. Chinese Hydraulics & Pneumatics,2016(4):14-20.

[17]黄振中.求解瞬时温度场的有限元显式算法[J].应用数学和力学,1987(6):497-504.

Huang Z Z. A finite element explicit algorithm for solving transient temperature fields[J]. Applied Mathematics and Mechanics,1987(6):497-504.

[18]马向平,骆清国.瞬态温度场有限元法求解的研究[J].装甲兵学报,2002(2):25-29. 

Ma X P, Luo Q G. Study on the solution of transient temperature field by finite element method[J]. Journal of Armored Forces,2002(2):25-29.

[19]郭瑞,李素敏,陈娅男.基于MATLAB的多种插值算法在地表时序监测中的应用研究[J].软件,2019,40(4):18-24.

Guo R, Li S M, Chen Y N. Research on the application of multiple interpolation algorithms based on MATLAB in surface time series monitoring[J]. Software,2019,40(4):18-24.

[20]韩孔艳,崔博闻,孙小入,等.不同插值方法对典型固体潮水位插值结果比较[J].大地测量与地球动力学,2023,43(3):318-321.

Han K Y, Cui B W, Sun X R, et al. Comparison of interpolation results of typical solid tide levels by different interpolation methods[J]. Journal of Geodesy and Geodynamics,2023,43(3):318-321.

[21]王彧坤,彭湘晖.几种常用插值方法比较分析[J].黑龙江水利科技,2008(1):62-63. 

Wang Y K, Peng X H. Comparative analysis of several commonly used interpolation methods[J]. Heilongjiang Hydraulic Science and Technology, 2008(1):62-63.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9