[1]王军,李霜.7A52铝合金轧制厚板探伤缺陷分析 [J].铝加工,2020,253(2):59-61.
Wang J,Li X.Analysis on defect detection of 7A52 aluminum alloy rolling plate [J].Aluminium Fabrication,2020,253(2):59-61.
[2]王磊,许雪宗,王克鸿,等.中厚板7A52铝合金光纤激光焊接接头组织与性能 [J].焊接学报,2020,41(10):28-31,37,98-99.
Wang L, Xu X Z, Wang K H, et al. Microstructure and properties of 7A52 aluminum alloy fiber laser welded joint [J]. Journal of the Chinese Welding Society, 2020,41(10):28-31,37,98-99.
[3]张林. 7A52铝合金厚板激光-MIG复合焊接工艺研究 [D].南京:南京理工大学,2018.
Zhang L. Study on Laser-MIG Composite Welding Process of 7A52 Aluminum Alloy Thick Plate [D]. Nanjing: Nanjing University of Science and Technology,2018.
[4]吕俊智,李国平,任政,等.7A52/7055铝合金层合结构动态力学性能研究 [J].兵器材料科学与工程,2019,42(2):1-4.
Lyu J Z, Li G P, Ren Z, et al. Study on dynamic mechanical properties of 7A52/7055 aluminum alloy laminates [J]. Ordnance Materials Science and Engineering,2019,42(2):1-4.
[5]腾志贵,王立娟,张万金,等.7A52铝合金中粗大化合物的分析 [J].轻合金加工技术,2009,37(5):12-14.
Teng Z G, Wang L J, Zhang W J, et al. Analysis of coarse compounds in 7A52 aluminum alloy [J]. Light Alloy Processing Technology,2009,37(5):12-14.
[6]Subramanian C. Some considerations towards the design of a wear resistant aluminium alloy [J].Wear,1992,1(115):193-205.
[7]王楠.机器零件摩擦磨损的研究 [J].品牌与标准化,2022(S2):80-82,86.
Wang N. Research on friction and wear of machine parts [J]. Brand and Standardization,2022(S2):80-82,86.
[8]田敬成,仲维锋,乔玉新,等.预变形对Al-Zn-Mg铝合金组织及力学性能的影响 [J].金属热处理,2021,46(3):76-80.
Tian J C, Zhong W F, Qiao Y X, et al. Effect of predeformation on microstructure and mechanical properties of Al-Zn-Mg aluminum alloy [J]. Heat Treatment of Metals,2021,46(3):76-80.
[9]Elhefnawey M, Shuai G L, Zhang D T, et al. On achieving ultra-high strength and improved wear resistance in Al-Zn-Mg alloy via ECAP [J]. Tribology International, 2021, 163:107188.
[10]Injor O M, Daramola O O, Adewuyi B O, et al. Grain refinement of Al-Zn-Mg alloy during equal channel angular pressing (ECAP) [J]. Results in Engineering, 2022, 16:100739.
[11]Gao L L, Cheng X H. Microstructure, phase transformation and wear behavior of Cu-10%Al-4%Fe alloy processed by ECAE [J]. Materials Science and Engineering A,2008, 473(1-2): 259-265.
[12]Avcu E. The influences of ECAP on the dry sliding wear behaviour of AA7075 aluminium alloy [J]. Tribology International, 2017, 110: 173-184.
[13]Ortiz-Cuellar E, Hernandez-Rodriguez M A L, García-Sanchez E. Evaluation of the tribological properties of an Al-Mg-Si alloy processed by severe plastic deformation [J].Wear, 2011, 271(9-10): 1828-1832.
[14]姜伟之,赵时熙,王春生,等. 工程材料的力学性能 [M].第2版(修订版).北京:北京航空航天大学出版社,2000.
Jiang W Z, Zhao S X, Wang C S, et al. Mechanical Properties of Engineering Materials [M]. 2nd Edition (Revised Edition). Beijing: Beihang University Press, 2000.
[15]Pedersen K O, Brvik T, Hopperstad O S. Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions [J]. Materials & Design, 2011, 32(1): 97-107.
[16]Liu X, Huang D, Yan C, et al. Multi-directional forging and aging treatment effects on friction and wear characterization of aluminium-bronze alloy [J]. Materials Characterization, 2020, 167: 110511.
[17]Shahreza B O, Hernandez-Rodriguez M A L, Garcia-Sanchez E, et al. The impact of microstructural refinement on the tribological behavior of niobium processed by indirect extrusion angular pressing [J]. Tribology International, 2022, 167: 107412.
[18]Lee Y C, Dahle A K, StJohn D H, et al. The effect of grain refinement and silicon content on grain formation in hypoeutectic Al-Si alloys [J]. Materials Science and Engineering: A, 1999, 259(1): 43-52.
[19]Sin H, Saka N, Suh N P. Abrasive wear mechanisms and the grit size effect [J]. Wear, 1979, 55(1): 163-190.
|