网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
7050铝合金非等厚带筋壁板压弯成形仿真分析与结构优化
英文标题:Simulation analysis and structural optimization on bending forming of 7050 aluminum alloy nonequal thickness panel with ribs
作者:陈乐乐 1 胡德友1 王振1 张世谦1 初冠南2  王越3 娄淑梅3 
单位:(1.天津航天长征火箭制造有限公司 天津300462 2.哈尔滨工业大学(威海) 材料科学与工程学院 山东 威海 264209   3.山东科技大学 智能装备学院 山东 泰安 271019) 
关键词:非等厚壁板 压弯成形 裂纹 环向筋条 应力集中 
分类号:TG386
出版年,卷(期):页码:2024,49(12):52-58
摘要:

 针对一大型铝合金非等厚壁板3点压弯成形过程中产生的裂纹,通过ABAQUS软件模拟分析认为这是由于壁板厚区及过渡区域的厚度变化及航向横梁的应力集中导致的。基于此,提出了两种结构优化方案,并利用数值模拟和试验相结合的方法分析了各方案中非等厚壁板压弯成形过程中的应力、应变分布特点。结果表明:环向筋条宽度渐变可以提高厚区附近环向筋条的抗压能力,降低应力集中;厚区适度外延可解决厚区刚度过大难以塑性成形的问题;两者结合可使得三点压弯正应力和切应力分布最为均匀,切应力降低,与此同时还解决了原始模型和单纯环向筋条渐变方案中因厚度变化过大而产生的翘起问题。

 

 For the cracks generated during the three-point bending process of a large aluminum alloy non-equal thickness panel, the reason for the cracks was analyzed by software ABAQUS simulation, which was the changes in thickness of panel thick zone and transition zone, as well as the stress concentration on the heading crossbeam. Then, two structural optimization schemes were proposed, and the stress and strain distribution characteristics in each scheme during the bending process of non-equal thickness panels were analyzed by combining the numerical simulation with experiment. The results show that the gradual change in width of circumferential ribs improves the compression resistance of circumferential ribs near the thick zones and reduces the stress concentration. The moderate extension of the thick zone can solve the problem of difficult plastic forming due to excessive stiffness in the thick zone. The combination of both results in the most uniform distribution of three-point bending normal stress and shear stress and reduce the shear stress. At the same time, the problem of warping caused by the excessive thickness changes in the original model and the simple gradual change scheme of circumferential rib is solved.

 
基金项目:
作者简介:
作者简介:陈乐乐(1986-),女,硕士,工程师 E-mail:chenlele86@126.com 通信作者:初冠南(1979-),男,博士,教授 E-mail:chuguannan@163.com
参考文献:

 
[1]吴增辉,李永华.有色金属整体壁板成形技术研究进展
[J].有色金属加工,2023,52(4):6-10,16.


 

Wu Z H, Li Y H.Research progress of nonferrous integral panel forming technology
[J]. Nonferrous Metals Processing, 2023,52(4):6-10,16.

 


[2]李勇,李东升,李小强.大型复杂壁板构件塑性成形技术研究与应用进展
[J].航空制造技术,2020,63(21):36-45.

 

Li Y, Li D S, Li X Q. A review of plastic technologies and applications for large and complexshaped panels
[J]. Aeronautical Manufacturing Technology, 2020,63(21):36-45.

 


[3]齐晗. 筋板件筋部充填机理及缺陷研究
[D].哈尔滨:哈尔滨工业大学,2010.

 

Qi H. Research on Filling Mechanism and Defects of Reinforcement Part of Reinfocing Plase
[D].Harbin:Harbin Institute of Technology,2010.

 


[4]李锋,王明涛,白雪飘,等.喷丸成形2024铝合金整体带筋壁板变形规律研究
[J].精密成形工程,2022,14(9):18-23.

 

Li F, Wang M T,Bai X P,et al. Deformation law of 2024 aluminum alloy stiffened integral panel by shot peen forming
[J].Journal of Netsshape Forming Engineering,2022,14(9):18-23.

 


[5]曾元松, 黄遐.大型整体壁板成形
[J].航空学报,2008,29(3):721-727.

 

Zeng Y S,Huang X. Forming technologies of large integral panel
[J].Acta Aeronautica et Astronautica Sinica,2008,29(3):721-727. 

 


[6]叶景申, 张宝红,于建民,等. 筋板类构件成形技术研究进展
[J].锻压装备与制造技术,2015,50(2):7-10.

 

Ye J S,Zhang B H,Yu J M,et al.Research progress of component with rib forming technology
[J].China Metal Forming Equipment & Manufacturing Technology,2015,50(2):7-10.

 


[7]郝永刚,张志超, 祝全超,等. 铝合金带筋板柔性多点模渐进压弯成形工艺仿真与试验
[J].塑性工程学报,2020,27(11):12-17.

 

Hao Y G,Zhang Z C, Zhu Q C, et al. Simulation and experiment on progressive bending of flexible multipoint mold of aluminum alloy stiffened panel
[J]. Journal of Plasticity Engineering, 2020,27(11):12-17.

 


[8]李永鹏,徐豫新,杨祥,等.冲击载荷作用下机身壁板破坏效应及结构优化
[J].振动与冲击,2023,42(14):40-47.

 

Li Y P,Xu Y X,Yang X,et al.Failure effect and structure optimization of a fuselage panel under impact load
[J].Journal of Vibration and Shock,2023,42(14):40-47.

 


[9]吴增辉.AZ31变形镁合金整体壁板的弯曲成形研究
[D].沈阳:沈阳理工大学,2023.

 

Wu Z H.Research on Bend Forming of AZ31 Wrought Magnesium Alloy Integral Panel
[D].Shenyang:Shenyang Ligong University,2023.

 


[10]王忠堂,吴凯琦,张宏亮,等.AZ31镁合金网格式壁板级进压弯成形试验研究
[J].热加工工艺,2023,52(3):88-91.

 

Wang Z T,Wu K Q,Zhang H L,et al.Experrimental study on progressive compression bending of AZ31 magnesium alloy grid panel
[J].Hot Working Technology,2023,52(3):88-91.

 


[11]刘相柱,陈沛,刘晓,等.航天器X型整体壁板加工变形控制技术研究
[J].机械科学与技术,2023,42(2):223-230.

 

 Liu X Z,Chen P,Liu X,et al.Study on deformation control technology of Xshape integral panel for spacecraft
[J].Mechanical Science and Technology for Aerospace Engineering,2023,42(2):223-230.

 


[12]乐晨,曹昱,杨帆,等.基于Abaqus的等边三角形网格加筋壳建模分析方法及试验验证研究
[J].导弹与航天运载技术,2019(2):12-16.

 

Le C,Cao Y,Yang F,et al.The analysis method and experimental verification of isogrid stiffened shell based on Abaqus
[J].Missiles and Space Vehicles,2019(2):12-16.

 


[13]Leon C M, Kohlgrüber D, Langrand B.Analysis of fuselage skin reinforcements with beam element models in flexible aircraft panels for ditching simulations
[J].IOP Conference Series:Materials Science and Engineering, 2021,1024(1):012054. 

 


[14]Boitsov V B,Gavva M L,Endogur I A, et al.Stressstrain state and buckling problems of structurallyanisotropic aircraft panels made of composite materials in view of production technology
[J].Russian Aeronautics,2018,61(4):524-532.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9