网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
钴基弹簧钢零件成形工艺及激光切割机的研究与应用
英文标题:Research and application of forming process for cobaltbased spring steel parts and laser cutting machine
作者:王悉颖 郭全庆 孟文博 赵婷婷 孟庆海 郑子昂 
单位:(中航西安飞机工业集团股份有限公司 陕西 西安710089) 
关键词:钴基弹簧钢 拉延筋 回弹补偿 五轴激光切割机 拉深成形 
分类号:TG386
出版年,卷(期):页码:2024,49(12):66-72
摘要:

 针对新型材料钴基弹簧钢零件成形中弹性大、难以贴胎优化成形工艺、手工修整量大的缺陷,分析了零件外形结构及材料性能,并借助有限元软件Dynaform对其拉深成形过程进行数值模拟,优化成形工艺提出将回弹量补偿于工艺型面中并设计专用的模具,拉深成形后使用五轴激光切割机进行外形切割,最终生产出合格的产品。不仅有效提高了零件的表面质量及成形精度,还大幅缩短了生产周期、降低了工人的劳动强度。试验结果表明,钴基弹簧钢的回弹大,但延展性较好,在拉深成形过程中选择合理的工艺型面设计与拉延筋结构可改善拉深成形效果,且通过回弹补偿修正得到的模具可有效改善回弹缺陷。 

 

 In response to the defects of high elasticity, difficulty in adhering to the tire, and large manual trimming in the forming of cobalt-based spring steel parts, the external structure and material properties of parts were analyzed, and the numerical simulation of the deep drawing process was carried out by finite element software Dynaform to optimize the forming process. Then, the springback amount was compensated in the process surface, and a special die was designed. Furthermore, after deep drawing, the shape was cut by using a five-axis laser cutting machine, and finally the qualified products were produced, which not only effectively improved the surface quality and forming accuracy of the parts, but also significantly shortened the production cycle and reduced the labor intensity of workers. The experimental results show that the cobalt-based spring steel has a large springback, but good ductility is good. In the deep drawing process,the reasonable process surface design and drawbead structure can improve the deep drawing effect, and the die obtained through springback compensation correction can effectively improve the springback defects.

 
基金项目:
作者简介:
作者简介:王悉颖(1993-),女,硕士,工程师 E-mail:476746846@qq.com
参考文献:

 
[1]苏长青,杨蕾,郝万里,等.飞机发动机吊挂多目标拓扑优化研究
[J].机械设计与制造,2020(12):24-27,33.


 

Su C Q, Yang L, Hao W L, et al. Research on multiobjective topology optimization of aircraft engine hanging
[J].Mechanical Design and Manufacturing,2020(12):24-27,33.

 


[2]莫洛季洛娃.精密合金手册
[M].简光沂,译.北京:北京科学技术出版社,1989.

 

Molodilova. Handbook of Precision Alloys
[M].Translated by Jian G Y. Beijing: Beijing Science and Technology Press, 1989.

 

 


[3]拉赫什塔德.弹簧钢与合金
[M].王传恩,译.北京:机械工业出版社,1992.

 

Rakhshtad. Spring Steel and Alloy
[M].Translated by Wang C E. Beijing: China Machine Press, 1992.

 


[4]郑晓辉,郭生武,韩海波,等.冷拔Co40NiCrMo合金的显微组织和抗拉伸性能
[J].稀有金属材料与工程,2005(8):1302-1305.

 

Zheng X H, Guo S W, Han H B, et al.Microstructure and tensile properties of cold drawn Co40NiCrMo alloy
[J].Rare Metal Materials and Engineering, 2005 (8): 1302-1305.

 


[5]郑晓辉,郭生武,金志浩,等. Co40NiCrMo合金强化机制
[J].粉末冶金材料科学与工程,2007(1):20-24.

 

Zheng X H, Guo S W, Jin Z H, et al. Powder metallurgy materials science and engineering
[J].Materials Science and Engineering of Powder Metallurgy,2007(1):20-24.

 


[6]金晓鸥,张松愉,薛文博,等.不同时效状态3J21合金拉伸性能
[J].宇航材料工艺,2008(6):60-63,67.

 

Jin X O, Zhang S Y, Xue W B, et al. Tensile properties of 3J21 alloy in different aging states
[J].Aerospace Materials and Technology,2008(6):60-63,67.

 


[7]金晓鸥,谭继亮,齐岳.室温大气环境下峰时效态3J21合金疲劳行为
[J].材料开发与应用,2012,27(6):11-14.

 

Jin X O, Tan J L, Qi Y. Fatigue behavior of 3J21 alloy under room temperature  atmospheric environment
[J].Materials Development and Application,2012,27(6):11-14.

 


[8]金晓鸥,刘洪波,何世禹,等.室温大气环境下过时效态3J21合金疲劳行为
[J].材料开发与应用,2011,26(4):16-19,23.

 

 Jin X O, Liu H B, He S Y, et al. Fatigue behavior of 3J21 alloy in obsolete state under atmospheric environment at room temperature
[J].Materials Development and Application,2011,26(4):16-19,23.

 


[9]金晓鸥,王正君,何世禹,等.室温大气环境下欠时效态3J21合金的拉伸性能
[J].钢铁研究,2010,38(3):17-19,23.

 

Jin X O, Wang Z J, He S Y, et al. Tensile properties of underaged 3J21 alloy under room temperature atmospheric environment
[J].Research on Iron and Steel,2010,38(3):17-19,23.

 


[10]蒋付强,邢英杰,范恽,等.3J21合金简化本构关系的建立及其纳米压痕试验
[J].电加工与模具,2016(2):54-57,62.

 

Jiang F Q,Xing Y J,Fan Y,et al.Establishment of simplified constitutive relation of 3J21 alloy and its nanoindentation test
[J].Electromachining & Mould,2016(2):54-57,62.

 


[11]闫华军,邢博,张双杰,等.基于Dynaform的前防撞梁回弹分析及模具补偿研究
[J].塑性工程学报,2023,30(8):35-41.

 

Yan H J, Xing B, Zhang S J,et al. Dynaformbased rebound analysis and mold compensation of front anticollision beam
[J].Journal of Plasticity Engineering,2023,30(8):35-41.

 


[12]何斌,邢昌.基于Dynaform的回弹控制及优化设计
[J].汽车实用技术,2018(21):79-81.

 

He B,Xing C. Rebound control and optimization design based on Dynaform
[J].Automotive Practical Technology,2018(21):79-81.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9