网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
DP980高强钢U形件板材冲压回弹预测
英文标题:Prediction on stamping springback for DP980 high strength steel U-shaped part
作者:胡晓1 2 王玉升2 刘勇3 靳阳1 王亮赟1 余灿生1 王飞龙1  徐烨2 曾宁富2 蔺永诚2 
单位:(1.攀钢集团研究院有限公司  四川 攀枝花 617000 2. 中南大学 机电工程学院  湖南 长沙410083  3. 攀钢集团攀枝花钢钒有限公司  四川 攀枝花617000) 
关键词:屈服准则 DP980高强钢 混合硬化-弹性模量衰减模型 VUMAT UMAT 
分类号:TG430
出版年,卷(期):页码:2024,49(12):73-81
摘要:

 U形件板材冲压回弹行为的精准预测是制造业中亟待解决的难题之一。通过单轴拉伸试验与循环加载试验,建立了基于Hill48屈服准则、混合硬化模型和弹性模量衰减模型的DP980高强钢冲压回弹预测模型。采用ABAQUS软件建立U形件板材冲压回弹有限元仿真模型,通过二次开发将建立的混合硬化-弹性模量衰减预测模型嵌入VUMAT、UMAT求解子程序。对比分析各向同性硬化模型、混合硬化模型与提出的预测模型对U形件冲压回弹仿真的预测结果。研究结果表明:基于所建立的混合硬化-弹性模量衰减模型与有限元仿真模型,可以较准确地预测DP980高强钢U形件板材冲压回弹行为,其回弹角度的预测误差仅为0.17%。

 

 Accurate prediction on stamping springback behavior of U-shaped part is one of the urgent problems to be solved in the manufacturing industry. Therefore, based on Hill48 yield criterion, hybrid hardening model and elastic modulus attenuation model, the stamping springback prediction model for DP980 high-strength steel was established by uniaxial tensile test and cyclic loading test, and the finite element simulation model for stamping springback of U-shaped part was established by using software ABAQUS. Furthermore, the hybrid hardening-elastic modulus attenuation prediction model was established, which was embedded into VUMAT and UMAT solving subroutines by secondary development, and the prediction results of isotropic hardening model, hybrid hardening model and the prediction model proposed were compared and analyzed in the springback simulation of U-shaped parts. The results show that based on the established hybrid hardening-elastic modulus attenuation model and the finite element simulation model, the stamping springback behavior of DP980 high strength steel  U-shaped part can be accurately predicted, and the prediction error of springback angle is only 0.17%.

 
基金项目:
基金项目:四川省攀西试验区重大科技攻关项目(第六批项目)
作者简介:
作者简介:胡晓(1990-),男,博士研究生,高级工程师 E-mail:hgdxiaohu@163.com 通信作者:蔺永诚(1976-),男,博士,教授 E-mail:yclin@csu.edu.cn
参考文献:

 
[1]罗海文,沈国慧. 超高强高韧化钢的研究进展和展望
[J]. 金属学报, 2020, 56 (4): 494-512.


 

Luo H W,Shen G H. Progress and perspective of ultrahigh strength steels having high toughness
[J]. Acta Metallurgica Sinica, 2020, 56 (4): 494-512.

 


[2]赵春梅,王恒,王俊,等.涡轮冲压组合喷管运动机构布局研究综述
[J/OL].航空发动机,1-7
[2024-11-15].

 

Zhao C M, Wang H, Wang J, et al. Review on movement mechanism configuration of TBCC nozzle
[J/OL]. Aeroengine,1-7
[2024-11-15].

 


[3]Han F, Cao Z B. Inelastic recovery of Q&P980 ultra high strength steel with a complicated deformation path
[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(10):921-928.

 


[4]李鹤飞. 高强钢断裂韧性与裂纹扩展机制研究
[D]. 合肥:中国科学技术大学, 2019.

 

Li H F. Investigation on Fracture Toughness and Crack Growth Mechanism of Highstrength Steels
[D]. Hefei: University of Science and Technology of China, 2019.

 


[5]潘俊杰. DP780高强钢板材成形极限及回弹研究
[D]. 襄阳:湖北文理学院, 2023.

 

Pan J J. Study on Forming Limit and Springback of DP780 Highstrength Steel Sheet
[D]. Xiangyang: Hubei University of Arts and Sciences, 2023.

 


[6]Lu Z P, Li D, Cao L L, et al. Springback control in complex sheetmetal forming based on advanced highstrength steel
[J]. Coatings, 2023, 13(5): 930.

 


[7]Chen J J, Cao J J, Zhao Q F, et al. A novel approach to springback control of highstrength steel in cold roll forming
[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107: 1793-1804.

 


[8]Yoshida F, Uemori T. A model of largestrain cyclic plasticity describing the bauschinger effect and workhardening stagnation
[J]. International Journal of Plasticity, 2002, 18(5-6): 661-686.

 


[9]刘子健. 基于YLD2000-2D屈服准则和变弹性模量的Ti-6Al-4V材料本构模型及应用
[D]. 太原:太原科技大学, 2021.

 

Liu Z J. The Constitutive Model and Application of Ti-6Al-4V Material Based on YLD2000-2D Yield Criterion and Variable Elastic Modulus
[D]. Taiyuan: Taiyuan University of Science and Technology, 2021.

 


[10]李潇逸. 铝合金板塑性成形非线性弹性行为研究
[D]. 秦皇岛:燕山大学, 2022.

 

Li X Y. Study on Nonlinear Elastic Behavior of Aluminum Alloy Sheet in Plastic Forming
[D]. Qinhuangdao: Yanshan University, 2022.

 


[11]徐虹,刘亚楠,于婷,等. 双相钢DP780在循环加载-卸载过程中的非弹性回复行为及其微观机理
[J]. 吉林大学学报(工学版), 2017, 47 (1): 191-198.

 

Xu H, Liu Y N, Yu T, et al. Inelastic recovery behavior and microscopic mechanism of high strength DP780 steel during cyclic loadingunloading
[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47 (1): 191-198.

 


[12]申丹凤,聂昕,陈建. 6082-T6挤压铝合金防撞梁压弯成形及回弹补偿
[J]. 塑性工程学报, 2023, 30 (7): 15-22.

 

Shen D F, Nie X, Chen J. Bending forming and springback compensation of 6082-T6 extruded aluminum alloy anticollision beam
[J]. Journal of Plasticity Engineering, 2023, 30 (7): 15-22.

 


[13]闫华军,邢博,张双杰,等. 基于Dynaform的前防撞梁回弹分析及模具补偿研究
[J]. 塑性工程学报, 2023, 30 (8): 35-41.

 

Yan H J, Xing B, Zhang S J,et al. Study on springback analysis and die compensation of front anticollision beam based on Dynaform
[J]. Journal of Plasticity Engineering, 2023, 30 (8): 35-41.

 


[14]Shaker W K, Klimchik A. Towards single point incremental forming accuracy: An approach for the springback effect compensation
[A].IEEE 19th International Conference on Automation Science and Engineering (CASE)
[C]. Auckland, New Zealand: IEEE, 2023.

 


[15]Choi H, Kwon Y, Cho J H, et al. Artificial intelligencebased springback compensation of EV motor component
[A].IOP Conference Series: Materials Science and Engineering
[C]. Montreal Canada: IOP Publishing, 2023.

 


[16]Marretta L, Ingarao G, Di Lorenzo R. Design of sheet stamping operations to control springback and thinning: A multiobjective stochastic optimization approach
[J]. International Journal of Mechanical Sciences, 2010, 52(7): 914-927.

 


[17]GB/T 228.1—2021. 金属材料拉伸试验第1部分:室温试验方法
[S].

 

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature
[S].

 


[18]辛策. 适用于循环加载的弹塑性本构模型的建立及应用
[D]. 秦皇岛:燕山大学, 2017.

 

Xin C. Establishment and Application of Elasticplastic Constitutive Model for Cyclic Loading
[D]. Qinhuangdao: Yanshan University, 2017.

 


[19]Safaei M, Zang S, Lee M G, et al. Evaluation of anisotropic constitutive models: Mixed anisotropic hardening and nonassociated flow rule approach
[J]. International Journal of Mechanical Sciences, 2013, 73: 53-68.

 


[20]Chung K, Kuwabara T, Verma R, et al. Numisheet 2011 Benchmark 4: Prestrain effect on springback of 2D draw bending
[A].Proceedings 8th NUMISHEET Conference
[C]. Seoul, Korea:AIP Conference Proceedings,2011.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9