网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
脉冲电流辅助对Ti2AlNb合金力学性能的影响
英文标题:Effect of pulse current assistance on mechanical properties for Ti2AlNb alloy
作者:刘洋1 2 高志荣1 2 李宗泽1 2 卫俊鑫1 2 曹守臻3 4 韩建超1 2 3 贾燚1 2 3 
单位:(1.太原理工大学 机械工程学院 山西 太原 030024 2.太原理工大学 先进金属复合材料成形技术与装备教育部  工程研究中心 山西 太原 030024 3.海安太原理工先进制造与智能装备产业研究院 江苏 海安 226600   4.黄山学院 机电工程学院 安徽 黄山 245041) 
关键词:Ti2AlNb合金 脉冲电流 显微组织 力学性能 断口形貌 
分类号:TG166.5
出版年,卷(期):页码:2024,49(12):121-129
摘要:

 Ti2AlNb合金作为新一代轻质高温结构材料,在航空航天领域备受瞩目,但是也存在抗变形能力大、难加工的问题。采用脉冲电流辅助降低Ti2AlNb合金的变形抗力,探索了等效电流密度和Ti2AlNb合金板电致温度的关系,并揭示了等效电流密度的平方与电致温度的平衡温度呈线性正相关。基于此对应关系,设计了电流密度参数分别为12.52、14.53、15.65和16.44 A·mm-2的脉冲电流辅助拉伸试验,试验结果表明,脉冲电流可以有效降低试样在变形过程中的流变应力,同时电流密度越大,试样产生的软化作用越明显。Ti2AlNb合金在不牺牲伸长率的情况下,其抗拉强度最大降低了47.9%,屈服强度最大降低了25.7%。

 

 Ti2AlNb alloy , as a new generation of lightweight high-temperature structural materials, has attracted much attention in the aerospace field, but it also has the problems of high deformation resistance and difficult processing. Therefore, the deformation resistance of Ti2AlNb alloy was reduced by using pulse current assistance, and the relationship between equivalent current density and electric  temperature of Ti2AlNb alloy plate was explored to reveal that the square of equivalent current density was linearly positively correlated with the equilibrium temperature of electric temperature. Then, based on this correspondence, the pulse current assisted tensile tests were designed with the current density parameters of 12.52, 14.53, 15.65 and 16.44 A·mm-2, respectively. The test results show that the pulse current can effectively reduce the rheological stress of sample during the deformation process, and the greater the current density, the more obvious the softening effect of sample. The tensile strength of Ti2AlNb alloy is decreased by a maximum of 47.9%, and the yield strength is decreased by a maximum of 25.7% without sacrificing elongation.

 
基金项目:
基金项目:国家自然科学基金资助项目(52275362,51904205);山西省基础研究计划优秀青年培育(202203021224003);中央引导地方科技发展资金资助项目(YDZJSX2021A020,YDZX20191400002149);海安太原理工大学先进制造与智能装备产业研究院开放研发项目 (2023HA-TYUTKFYF014,HXKT2023133)
作者简介:
作者简介:刘洋(1998-),男,硕士研究生 E-mail:ly13467005944@163.com 通信作者:贾燚(1981-),男,博士,讲师 E-mail:jiayi@tyut.edu.cn
参考文献:

 
[1]Banerjee D, Gogia A K, Nandi T K, et al. A new ordered orthorhombic phase in a Ti3AlNb alloy
[J]. Acta Metallurgica, 1988, 36(4): 871-882.


 


[2]周毅,曹京霞,黄旭,等. β/B2锻造Ti-22Al-23Nb-2(Mo,Zr)合金的组织演化与综合力学性能
[J].航空材料学报,2020,40(4):25-35. 

 

Zhou Y, Cao J X, Huang X, et al. Microstructure evolution and comprehensive mechanical properties of β/B2 processed Ti-22A1-23Nb-2(Mo,Zr) alloy
[J]. Journal of Aeronautical Materials, 2020,40(4):25-35.

 


[3]Li D, Wright S I, Boehlert C J. The grain boundary character distribution of a fullyorthorhombic Ti-25Al-24Nb (at.%) alloy
[J]. Scripta Materialia, 2004, 51(6): 545-550.

 


[4]Zhao H Z, Lu B, Tong M, et al. Tensile behavior of Ti-22Al-24Nb-0.5 Mo in the range 25~650 ℃
[J]. Materials Science and Engineering: A, 2017, 679: 455-464.

 


[5]王斌,卫俊鑫,李升,等. 热轧及热处理对Ti2AlNb合金板材显微组织及力学性能的影响
[J].中国有色金属学报,2023,33(10):3251-3263. 

 

Wang B, Wei J X, Li S, et al. Effect of hot rolling and heat treatments on microstructure and mechanical properties of TizAlNb alloy plates
[J]. The Chinese Journal of Nonferrous Metals,2023,33(10):3251-3263.

 


[6]Geiger M, Merklein M, Pitz M. Laser and forming technology-An idea and the way of implementation
[J]. Journal of Materials Processing Technology, 2004, 151(1-3): 3-11.

 


[7]Mohammadi A, Vanhove H, Van Bael A, et al. Towards accuracy improvement in single point incremental forming of shallow parts formed under laser assisted conditions
[J]. International Journal of Material Forming, 2016, 9: 339-351.

 


[8]Saidi B, Giraud Moreau L, Mhemed S, et al. Hot incremental forming of titanium human skull prosthesis by using cartridge heaters: A reverse engineering approach
[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101: 873-880. 

 


[9]Psyk V, Risch D, Kinsey B L, et al. Electromagnetic forming-A review
[J]. Journal of Materials Processing Technology, 2011, 211(5): 787-829.

 


[10]Wang X, Xu J, Jiang Z, et al. Size effects on flow stress behavior during electricallyassisted microtension in a magnesium alloy AZ31
[J]. Materials Science and Engineering: A, 2016, 659: 215-224.

 


[11]Zhang H Y, Yan N, Liang H Y, et al. Phase transformation and microstructure control of Ti2AlNbbased alloys: A review
[J]. Journal of Materials Science & Technology, 2021, 80: 203-216.

 


[12]敖冬威.Ti-6Al-4V钛合金板材电脉冲辅助单点渐进成形研究
[D].济南:山东大学,2019.

 

Ao D W. Research on Electropulsing Assisted Single Incremental Forming of Ti-6Al-4V Titanium Alloy Sheet
[D]. Jinan: Shandong University, 2019.

 


[13]Bumgardner C H, Croom B P, Song N, et al. Low energy electroplasticity in aluminum alloys
[J]. Materials Science and Engineering: A, 2020, 798: 140235.

 


[14]Xu Z, Huang J, Peng L, et al. In situ observation of deformation behavior of Ti6Al4V subjected to electricallyassisted forming process
[J]. Procedia Manufacturing, 2020, 50: 647-651.

 


[15]李骁.Ti2AlNb合金电流辅助超塑成形/扩散连接工艺及机理研究
[D].哈尔滨:哈尔滨工业大学,2020.

 

Li X. Investigation on Electrically Assisted Superplastic Forming/Diffusion Bonding and Its Mechanism of Ti2AlNb Alloy
[D]. Harbin: Harbin Institute of Technology, 2020.

 


[16]Liang C L, Lin K L. The microstructure and property variations of metals induced by electric current treatment: A review
[J]. Materials Characterization, 2018, 145: 545-555.

 


[17]Xu X F, Yan X D, Qian Y, et al. Ti-6Al-4V alloy strengthening via instantaneous phase transformation induced by electropulsing
[J]. Journal of Alloys and Compounds, 2022, 899: 163303.

 


[18]Klose F B, Ziegenbein A, Weidenmüller J, et al. Portevin-LeChatelier effect in strain and stress controlled tensile tests
[J]. Computational Materials Science, 2003, 26: 80-86.

 


[19]薛晨. 等温锻造Ti-22Al-25Nb合金的显微组织演变与力学性能研究
[D]. 西安:西北工业大学, 2014.

 

Xue C. Research on Microstructure Evolution and Mechanical Properties of Isothermally Forged Ti-22Al-25Nb Alloys
[D]. Xi′an: Northwestern Polytechnical University,2014. 

 


[20]Ao D, Chu X, Yang Y, et al. Effect of electropulsing treatment on microstructure and mechanical behavior of Ti-6Al-4V alloy sheet under argon gas protection
[J]. Vacuum, 2018, 148: 230-238.

 


[21]Zhang J, Tan C, Yu R, et al. Adiabatic shear fracture in Ti-6Al-4V alloy
[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(11): 2396-2401.

 


[22]王斌,张凯锋,蒋少松,等.固溶温度对Ti2AlNb基合金组织演变的影响
[J].航空材料学报,2015,35(3):7-12. 

 

Wang B, Zhang K F, Jiang S S, et al. Effect of solution treatment temperature on microstructural evolution of Ti2AlNbbased alloy
[J]. Journal of Aeronautical Materials, 2015,35(3):7-12.

 


[23]Shao B, Shan D, Guo B, et al. Plastic deformation mechanism and interaction of B2, α2, and O phases in Ti22Al25Nb alloy at room temperature
[J]. International Journal of Plasticity, 2019, 113: 18-34.

 


[24]Shao B, Wan S, Xu W, et al. Formation mechanism of an α2 phaserich layer on the surface of Ti-22Al-25Nb alloy
[J]. Materials Characterization, 2018, 145: 205-209.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9