[1]Banerjee D, Gogia A K, Nandi T K, et al. A new ordered orthorhombic phase in a Ti3AlNb alloy [J]. Acta Metallurgica, 1988, 36(4): 871-882.
[2]周毅,曹京霞,黄旭,等. β/B2锻造Ti-22Al-23Nb-2(Mo,Zr)合金的组织演化与综合力学性能 [J].航空材料学报,2020,40(4):25-35.
Zhou Y, Cao J X, Huang X, et al. Microstructure evolution and comprehensive mechanical properties of β/B2 processed Ti-22A1-23Nb-2(Mo,Zr) alloy [J]. Journal of Aeronautical Materials, 2020,40(4):25-35.
[3]Li D, Wright S I, Boehlert C J. The grain boundary character distribution of a fullyorthorhombic Ti-25Al-24Nb (at.%) alloy [J]. Scripta Materialia, 2004, 51(6): 545-550.
[4]Zhao H Z, Lu B, Tong M, et al. Tensile behavior of Ti-22Al-24Nb-0.5 Mo in the range 25~650 ℃ [J]. Materials Science and Engineering: A, 2017, 679: 455-464.
[5]王斌,卫俊鑫,李升,等. 热轧及热处理对Ti2AlNb合金板材显微组织及力学性能的影响 [J].中国有色金属学报,2023,33(10):3251-3263.
Wang B, Wei J X, Li S, et al. Effect of hot rolling and heat treatments on microstructure and mechanical properties of TizAlNb alloy plates [J]. The Chinese Journal of Nonferrous Metals,2023,33(10):3251-3263.
[6]Geiger M, Merklein M, Pitz M. Laser and forming technology-An idea and the way of implementation [J]. Journal of Materials Processing Technology, 2004, 151(1-3): 3-11.
[7]Mohammadi A, Vanhove H, Van Bael A, et al. Towards accuracy improvement in single point incremental forming of shallow parts formed under laser assisted conditions [J]. International Journal of Material Forming, 2016, 9: 339-351.
[8]Saidi B, Giraud Moreau L, Mhemed S, et al. Hot incremental forming of titanium human skull prosthesis by using cartridge heaters: A reverse engineering approach [J]. The International Journal of Advanced Manufacturing Technology, 2019, 101: 873-880.
[9]Psyk V, Risch D, Kinsey B L, et al. Electromagnetic forming-A review [J]. Journal of Materials Processing Technology, 2011, 211(5): 787-829.
[10]Wang X, Xu J, Jiang Z, et al. Size effects on flow stress behavior during electricallyassisted microtension in a magnesium alloy AZ31 [J]. Materials Science and Engineering: A, 2016, 659: 215-224.
[11]Zhang H Y, Yan N, Liang H Y, et al. Phase transformation and microstructure control of Ti2AlNbbased alloys: A review [J]. Journal of Materials Science & Technology, 2021, 80: 203-216.
[12]敖冬威.Ti-6Al-4V钛合金板材电脉冲辅助单点渐进成形研究 [D].济南:山东大学,2019.
Ao D W. Research on Electropulsing Assisted Single Incremental Forming of Ti-6Al-4V Titanium Alloy Sheet [D]. Jinan: Shandong University, 2019.
[13]Bumgardner C H, Croom B P, Song N, et al. Low energy electroplasticity in aluminum alloys [J]. Materials Science and Engineering: A, 2020, 798: 140235.
[14]Xu Z, Huang J, Peng L, et al. In situ observation of deformation behavior of Ti6Al4V subjected to electricallyassisted forming process [J]. Procedia Manufacturing, 2020, 50: 647-651.
[15]李骁.Ti2AlNb合金电流辅助超塑成形/扩散连接工艺及机理研究 [D].哈尔滨:哈尔滨工业大学,2020.
Li X. Investigation on Electrically Assisted Superplastic Forming/Diffusion Bonding and Its Mechanism of Ti2AlNb Alloy [D]. Harbin: Harbin Institute of Technology, 2020.
[16]Liang C L, Lin K L. The microstructure and property variations of metals induced by electric current treatment: A review [J]. Materials Characterization, 2018, 145: 545-555.
[17]Xu X F, Yan X D, Qian Y, et al. Ti-6Al-4V alloy strengthening via instantaneous phase transformation induced by electropulsing [J]. Journal of Alloys and Compounds, 2022, 899: 163303.
[18]Klose F B, Ziegenbein A, Weidenmüller J, et al. Portevin-LeChatelier effect in strain and stress controlled tensile tests [J]. Computational Materials Science, 2003, 26: 80-86.
[19]薛晨. 等温锻造Ti-22Al-25Nb合金的显微组织演变与力学性能研究 [D]. 西安:西北工业大学, 2014.
Xue C. Research on Microstructure Evolution and Mechanical Properties of Isothermally Forged Ti-22Al-25Nb Alloys [D]. Xi′an: Northwestern Polytechnical University,2014.
[20]Ao D, Chu X, Yang Y, et al. Effect of electropulsing treatment on microstructure and mechanical behavior of Ti-6Al-4V alloy sheet under argon gas protection [J]. Vacuum, 2018, 148: 230-238.
[21]Zhang J, Tan C, Yu R, et al. Adiabatic shear fracture in Ti-6Al-4V alloy [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(11): 2396-2401.
[22]王斌,张凯锋,蒋少松,等.固溶温度对Ti2AlNb基合金组织演变的影响 [J].航空材料学报,2015,35(3):7-12.
Wang B, Zhang K F, Jiang S S, et al. Effect of solution treatment temperature on microstructural evolution of Ti2AlNbbased alloy [J]. Journal of Aeronautical Materials, 2015,35(3):7-12.
[23]Shao B, Shan D, Guo B, et al. Plastic deformation mechanism and interaction of B2, α2, and O phases in Ti22Al25Nb alloy at room temperature [J]. International Journal of Plasticity, 2019, 113: 18-34.
[24]Shao B, Wan S, Xu W, et al. Formation mechanism of an α2 phaserich layer on the surface of Ti-22Al-25Nb alloy [J]. Materials Characterization, 2018, 145: 205-209.
|