[1]王国峰, 刘永康, 刘青, 等. Ni-Co纳米镀层为中间层的TC4钛合金低温扩散连接 [J]. 锻压技术, 2022, 47(11): 239-245.
Wang G F, Liu Y K, Liu Q, et al. Low temperature diffusion bonding on TC4 titanium alloy with Ni-Co nano-coating as intermediate layer [J]. Forging & Stamping Technology, 2022, 47(11): 239-245.
[2]雷磊, 朱琦玮, 赵秦阳, 等. TC21钛合金拉伸和冲击韧性的内在控制机理研究 [J]. 稀有金属材料与工程, 2024, 53(5):1449-1457.
Lei L, Zhu Q W, Zhao Q Y, et al. Intrinsic control mechanism of tensile and impact toughness of TC21 titanium alloy [J]. Rare Metal Materials and Engineering, 2024, 53(5):1449-1457.
[3]仵羽羽. TC21钛合金B-Al复合渗层的制备及其性能研究 [D]. 昆明:昆明理工大学, 2023.
Wu Y Y. Study on the Preparation and Properties of TC21 Titanium Alloy B-Al Composite Infiltration Layer [D]. Kunming: Kunming University of Science and Technology, 2023.
[4]张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件 [J]. 材料导报, 2018, 32(22): 3900-3907.
Zhang Y J, Wu G L, Wu S W. Kinetics and critical conditions for imitation of dynamic recrystallization of Nb-Ti microalloyed strength steel [J]. Materials Reports, 2018, 32(22): 3900-3907.
[5]Li J,Zhu W L,Li B M, et al. Characterization of hot deformation behavior of TC32 titanium alloy [J]. IOP Conference Series: Materials Science and Engineering, 2019,474(1):012045.
[6]周伟,葛鹏,李倩,等. Ti-5553合金热变形时动态再结晶的临界条件 [J]. 稀有金属材料与工程, 2016, 45(7): 1732-1735.
Zhou W, Ge P, Li Q, et al. Critical conditions for dynamic recrystallization of Ti-5553 alloy during hot deformation [J]. Rare Metal Materials and Engineering, 2016, 45(7): 1732-1735.
[7]Li C, Ding Z L, Zwaag S. The modeling of the flow behavior below and above the two-phase region for two newly developed meta-stable β titanium alloys [J]. Advanced Engineering Materials, 2021, 23(1): 1901552.
[8]Lu L L, Zhang Y M, Zhang Z L, et al. Investigation on microstructure and texture evolution of Ti-6Al-3Nb-2Zr-1Mo alloy during hot deformation [J]. Materials Research Express, 2021, 8(9): 096520.
[9]Chai Z, Wang W Y, Ren Y, et al. Hot deformation behavior and microstructure evolution of TC11 dual-phase titanium alloy [J]. Materials Science and Engineering: A, 2024, 898: 146331.
[10]Zhang S, Zhang H Y, Liu X J, et al. Thermal deformation behavior investigation of Ti-10V-5Al-2.5Fe-0.1B titanium alloy based on phenomenological constitutive models and a machine learning method [J]. Journal of Materials Research and Technology, 2024,29: 589-608.
[11]孙越, 孙勇, 杨勇, 等. TC21钛合金热压缩本构方程及热加工图 [J]. 锻压技术, 2023, 48(4): 242-248.
Sun Y, Sun Y, Yang Y, et al. Constitutive equation and thermal processing map of thermal compression for TC21 titanium alloy [J]. Forging & Stamping Technology, 2023, 48(4): 242-248.
[12]Jiang Q Y, Guo W Y, Wang B M, et al. Hot deformation and constitutive modeling of a Ti-Al-Sn-Zr-Mo-Cr-Nb alloy [J]. Materials Today Communications, 2024, 40:110037-110037.
[13]王迎新. Mg-Al合金的晶粒细化、热变形行为及加工工艺的研究 [D]. 上海:上海交通大学, 2006.
Wang Y X. Study of Grain Refinement, Hot Deformation Behavior and Working Technology of Mg-Al Alloys [D]. Shanghai:Shanghai Jiao Tong University, 2006.
[14]朱鸿昌. TB17钛合金热加工过程显微组织演变研究 [D]. 南昌:南昌航空大学, 2019.
Zhu H C. Study on Microstructure Evolution of TB17 Titanium Alloy during Hot Working Process [D]. Nanchang:Nanchang Hangkong University, 2019.
[15]万帆, 运新兵, 毕胜, 等. 铝锶合金高温塑性变形行为及本构方程 [J]. 中国有色金属学报, 2018, 28(5):888-896.
Wan F, Yun X B, Bi S, et al. Pyroplastic deformation behavior and constitutive equation of Al-Sr alloy [J]. The Chinese Journal of Nonferrous Metals, 2018, 28(5):888-896.
[16]黄剑. TC18 钛合金热变形行为及微观组织/织构演变研究 [D]. 长沙:中南大学, 2019.
Huang J. Study on Hot Deformation Behaviour and Microstructure/Texture Evolution of TC18 Titanium Alloy [D]. Changsha:Central South University, 2019.
[17]李萍, 许海峰, 孟淼, 等. Ti65钛合金热变形行为及本构方程 [J]. 塑性工程学报, 2024,31(2):120-128.
Li P, Xu H F, Meng M, et al. Hot deformation behavior and constitutive equation of Ti65 titanium alloy [J]. Journal of Plasticity Engineering, 2024,31(2):120-128.
[18]Appel F, Lorenz U, Oehring M, et al. Thermally activated deformation mechanisms in micro-alloyed two-phase titanium amminide alloys [J]. Materials Science and Engineering: A, 1997, 233(1-2): 1-14.
[19]陶成, 崔霞, 欧阳德来, 等. TC21钛合金α片层静态球化动力学 [J]. 塑性工程学报, 2023, 30(9):112-120.
Tao C, Cui X, Ouyang D L, et al. Static spheroidization kinetics of α lamellar of TC21 titanium alloy [J]. Journal of Plasticity Engineering, 2023, 30(9): 112-120.
[20]Liu Y H, Ning Y Q, Yao Z K, et al. Hot deformation behavior of Ti-6.0Al-7.0Nb biomedical alloy by using processing map [J]. Journal of Alloys and Compounds, 2014, 587: 183-189.
[21]石志峰.TC21钛合金工艺优化及组织性能关系研究 [D].西安:西北工业大学,2016.
Shi Z F. Researches on Processing Optimization and Microstructure-Property Relationship of TC21 Titanium Alloy [D]. Xi′an:Northwestern Polytechnical University, 2016.
[22]刘剑箫, 姜超, 翟月雯, 等. FGH4096高温合金的动态再结晶行为 [J]. 锻压技术, 2023, 48(7): 242-248.
Liu J X, Jiang C, Zhai Y W, et al. Dynamic recrystallization behavior for superalloy FGH4096 [J]. Forging & Stamping Technology, 2023, 48(7): 242-248.
[23]李凡. 低碳微合金钢热变形过程奥氏体形变再结晶行为研究 [D]. 马鞍山:安徽工业大学, 2021.
Li F. Research on Dynamic Recrystallization Behavior of Austenite in Low Carbon Microalloyed Steel During Hot Deformation [D]. Maanshan:Anhui University of Technology, 2021.
[24]白青青, 刘庭耀, 金磊. 航空用1Cr12Ni3MoVN耐热钢的动态再结晶行为 [J].金属热处理, 2024, 49(6): 224-231.
Bai Q Q, Liu T Y, Jin L. Dynamic recrystallization behavior of 1Cr12Ni3MoVN heat-resistant steel for aviation [J]. Heat Treatment of Metals, 2024, 49(6): 224-231.
[25]William J, Mehl R. Reaction kinetics in processes of nucleation and growth [J]. Trans. Metall. Soc. AIME, 1939, 135: 416-442.
[26]Avrami M. Kinetics of phase change. I General theory [J]. The Journal of Chemical Physics, 1939, 7(12): 1103-1112.
[27]Quan G Z, Wu D S, Luo G C, et al. Dynamic recrystallization kinetics in α phase of as-cast Ti-6Al-2Zr-1Mo-1V alloy during compression at different temperatures and strain rates [J]. Materials Science and Engineering A,2014, 589:23-33.
[28]Jonas J J, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization [J]. Acta Materialia, 2009, 57(9): 2748-2756.
[29]康颖安, 张俊彦, 谭加才. 相对密度对泡沫铝力学性能和能量吸收性能的影响 [J]. 功能材料, 2006,37(2): 247-249.
Kang Y A, Zhang J Y, Tan J C. Effect of relative density on the compressive property and energy absorption capacity of aluminum foams [J]. Journal of Functional Materials, 2006, 37(2): 247-249.
[30]Poliak E I, Jonas J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Materialia, 1996, 44(1): 127-136.
[31]黄天伦. LNG罐9Ni钢大型封头冲压模拟与实验研究 [D]. 常州:常州大学, 2021.
Huang T L. Simulation and Experimental Research on Stamping of 9Ni for Steel Large Head of LNG Tank [D]. Changzhou:Changzhou University, 2021.
[32]Sellars C M. Modelling microstructural development during hot rolling [J]. Materials Science and Technology, 1990, 6(11): 1072-1081.
[33]Sellars M C, Whiteman A J. Recrystallization and grain growth in hot rolling [J]. Metal Science, 1979, 13A(3-4): 187-194.
|