网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TC21钛合金热变形及动态再结晶行为
英文标题:Hot deformation and dynamic recrystallization behavior of TC21 titanium alloy
作者:姜玉强 王敏博 张翼飞 郭彦伟 黄志超 
单位:(华东交通大学 材料科学与工程学院 江西 南昌 330013) 
关键词:TC21钛合金 动态再结晶 微观组织 热变形 力学性能 
分类号:TG316
出版年,卷(期):页码:2024,49(12):180-187
摘要:

 摘要:钛合金构件的服役性能受其微观组织的影响,而热成形工艺决定了合金的微观组织。为获得热成形工艺对钛合金高温变形及微观组织演变的影响机理,以损伤容限型TC21钛合金为研究对象,对其进行等温热压缩试验,变形温度为900和940 ℃,应变速率为0.001、0.01、0.1和1 s-1,压下量为60%。基于实验结果和动态再结晶理论,获得了该合金的高温变形规律,并通过构建动力学模型分析了动态再结晶的演变规律。结果表明:TC21钛合金的热变形行为受到变形温度和应变速率的双重影响,其动态再结晶过程符合Avrami动力学方程;在相同应变速率下,高变形温度时的动态再结晶速率更快,而在相同温度下,低应变速率则会使动态再结晶速率减小。

 

 Abstract: The service performance of titanium alloy component is affected by its microstructure, and the microstructure of alloy is determined by the hot forming process. Therefore, in order to obtain the influence mechanisms of forming process on the high-temperature deformation and microstructure evolution of titanium alloy, for damage tolerant TC21 titanium alloy, the isothermal thermal compression tests were carried out at the deformation temperatures of 900 and 940 ℃, the strain rates of 0.001,0.01,0.1 and 1 s-1 and the reduction amount of 60%. Then, based on the experimental results and the dynamic recrystallization theory, the high-temperature deformation behaviors of the alloy were obtained, and the evolution laws of dynamic recrystallization were analyzed by constructing a dynamic model. The results show that the thermal deformation behavior of TC21 titanium alloy is influenced by both deformation temperature and strain rate, and its dynamic recrystallization process conforms to the Avrami kinetic equation. At the same strain rate, the dynamic recrystallization rate is faster at higher deformation temperature, while at the same temperature, the dynamic recrystallization rate is smaller at the lower strain rate.

 
基金项目:
基金项目:江西省自然科学基金资助项目(20232BAB204054);江西省教育厅科技项目(GJJ210670)
作者简介:
作者简介:姜玉强(1987-),男,博士,讲师 E-mail:jiangyq2021@126.com 通信作者:黄志超(1971-),男,博士,教授 E-mail:hzcosu@163.com
参考文献:

 
[1]王国峰, 刘永康, 刘青, 等. Ni-Co纳米镀层为中间层的TC4钛合金低温扩散连接
[J]. 锻压技术, 2022, 47(11): 239-245.


 

Wang G F, Liu Y K, Liu Q, et al. Low temperature diffusion bonding on TC4 titanium alloy with Ni-Co nano-coating as intermediate layer
[J]. Forging & Stamping Technology, 2022, 47(11): 239-245.

 


[2]雷磊, 朱琦玮, 赵秦阳, 等. TC21钛合金拉伸和冲击韧性的内在控制机理研究
[J]. 稀有金属材料与工程, 2024, 53(5):1449-1457.

 

Lei L, Zhu Q W, Zhao Q Y, et al. Intrinsic control mechanism of tensile and impact toughness of TC21 titanium alloy
[J]. Rare Metal Materials and Engineering, 2024, 53(5):1449-1457.

 


[3]仵羽羽. TC21钛合金B-Al复合渗层的制备及其性能研究
[D]. 昆明:昆明理工大学, 2023.

 

Wu Y Y. Study on the Preparation and Properties of TC21 Titanium Alloy B-Al Composite Infiltration Layer
[D]. Kunming: Kunming University of Science and Technology, 2023. 

 


[4]张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件
[J]. 材料导报, 2018, 32(22): 3900-3907.

 

Zhang Y J, Wu G L, Wu S W. Kinetics and critical conditions for imitation of dynamic recrystallization of Nb-Ti microalloyed strength steel
[J]. Materials Reports, 2018, 32(22): 3900-3907.

 


[5]Li J,Zhu W L,Li B M, et al. Characterization of hot deformation behavior of TC32 titanium alloy
[J]. IOP Conference Series: Materials Science and Engineering, 2019,474(1):012045.

 


[6]周伟,葛鹏,李倩,等. Ti-5553合金热变形时动态再结晶的临界条件
[J]. 稀有金属材料与工程, 2016, 45(7): 1732-1735.

 

Zhou W, Ge P, Li Q, et al. Critical conditions for dynamic recrystallization of Ti-5553 alloy during hot deformation
[J]. Rare Metal Materials and Engineering, 2016, 45(7): 1732-1735.

 


[7]Li C, Ding Z L, Zwaag S. The modeling of the flow behavior below and above the two-phase region for two newly developed meta-stable β titanium alloys
[J]. Advanced Engineering Materials, 2021, 23(1): 1901552.

 


[8]Lu L L, Zhang Y M, Zhang Z L, et al. Investigation on microstructure and texture evolution of Ti-6Al-3Nb-2Zr-1Mo alloy during hot deformation
[J]. Materials Research Express, 2021, 8(9): 096520.

 


[9]Chai Z, Wang W Y, Ren Y, et al. Hot deformation behavior and microstructure evolution of TC11 dual-phase titanium alloy
[J]. Materials Science and Engineering: A, 2024, 898: 146331.

 


[10]Zhang S, Zhang H Y, Liu X J, et al. Thermal deformation behavior investigation of Ti-10V-5Al-2.5Fe-0.1B titanium alloy based on phenomenological constitutive models and a machine learning method
[J]. Journal of Materials Research and Technology, 2024,29: 589-608.

 


[11]孙越, 孙勇, 杨勇, 等. TC21钛合金热压缩本构方程及热加工图
[J]. 锻压技术, 2023, 48(4): 242-248.

 

Sun Y, Sun Y, Yang Y, et al. Constitutive equation and thermal processing map of thermal compression for TC21 titanium alloy
[J]. Forging & Stamping Technology, 2023, 48(4): 242-248.

 


[12]Jiang Q Y, Guo W Y, Wang B M, et al. Hot deformation and constitutive modeling of a Ti-Al-Sn-Zr-Mo-Cr-Nb alloy
[J]. Materials Today Communications, 2024, 40:110037-110037.

 


[13]王迎新. Mg-Al合金的晶粒细化、热变形行为及加工工艺的研究
[D]. 上海:上海交通大学, 2006.

 

Wang Y X. Study of Grain Refinement, Hot Deformation Behavior and Working Technology of Mg-Al Alloys
[D]. Shanghai:Shanghai Jiao Tong University, 2006.

 


[14]朱鸿昌. TB17钛合金热加工过程显微组织演变研究
[D]. 南昌:南昌航空大学, 2019.

 

Zhu H C. Study on Microstructure Evolution of TB17 Titanium Alloy during Hot Working Process
[D]. Nanchang:Nanchang Hangkong University, 2019.

 


[15]万帆, 运新兵, 毕胜, 等. 铝锶合金高温塑性变形行为及本构方程
[J]. 中国有色金属学报, 2018, 28(5):888-896.

 

Wan F, Yun X B, Bi S, et al. Pyroplastic deformation behavior and constitutive equation of Al-Sr alloy
[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(5):888-896.

 


[16]黄剑. TC18 钛合金热变形行为及微观组织/织构演变研究
[D]. 长沙:中南大学, 2019.

 

Huang J. Study on Hot Deformation Behaviour and Microstructure/Texture Evolution of TC18 Titanium Alloy
[D]. Changsha:Central South University, 2019.

 


[17]李萍, 许海峰, 孟淼, 等. Ti65钛合金热变形行为及本构方程
[J]. 塑性工程学报, 2024,31(2):120-128.

 

Li P, Xu H F, Meng M, et al. Hot deformation behavior and constitutive equation of Ti65 titanium alloy
[J]. Journal of Plasticity Engineering, 2024,31(2):120-128.

 


[18]Appel F, Lorenz U, Oehring M, et al. Thermally activated deformation mechanisms in micro-alloyed two-phase titanium amminide alloys
[J]. Materials Science and Engineering: A, 1997, 233(1-2): 1-14.

 


[19]陶成, 崔霞, 欧阳德来, 等. TC21钛合金α片层静态球化动力学
[J]. 塑性工程学报, 2023, 30(9):112-120.

 

Tao C, Cui X, Ouyang D L, et al. Static spheroidization kinetics of α lamellar of TC21 titanium alloy
[J]. Journal of Plasticity Engineering, 2023, 30(9): 112-120.

 


[20]Liu Y H, Ning Y Q, Yao Z K, et al. Hot deformation behavior of Ti-6.0Al-7.0Nb biomedical alloy by using processing map
[J]. Journal of Alloys and Compounds, 2014, 587: 183-189.

 


[21]石志峰.TC21钛合金工艺优化及组织性能关系研究
[D].西安:西北工业大学,2016.

 

Shi Z F. Researches on Processing Optimization and Microstructure-Property Relationship of TC21 Titanium Alloy
[D]. Xi′an:Northwestern Polytechnical University, 2016.

 


[22]刘剑箫, 姜超, 翟月雯, 等. FGH4096高温合金的动态再结晶行为
[J]. 锻压技术, 2023, 48(7): 242-248.

 

Liu J X, Jiang C, Zhai Y W, et al. Dynamic recrystallization behavior for superalloy FGH4096
[J]. Forging & Stamping Technology, 2023, 48(7): 242-248.

 


[23]李凡. 低碳微合金钢热变形过程奥氏体形变再结晶行为研究
[D]. 马鞍山:安徽工业大学, 2021.

 

Li F. Research on Dynamic Recrystallization Behavior of Austenite in Low Carbon Microalloyed Steel During Hot Deformation
[D]. Maanshan:Anhui University of Technology, 2021.

 


[24]白青青, 刘庭耀, 金磊. 航空用1Cr12Ni3MoVN耐热钢的动态再结晶行为
[J].金属热处理, 2024, 49(6): 224-231.

 

Bai Q Q, Liu T Y, Jin L. Dynamic recrystallization behavior of 1Cr12Ni3MoVN heat-resistant steel for aviation
[J]. Heat Treatment of Metals, 2024, 49(6): 224-231.

 


[25]William J, Mehl R. Reaction kinetics in processes of nucleation and growth
[J]. Trans. Metall. Soc. AIME, 1939, 135: 416-442.


[26]Avrami M. Kinetics of phase change. I General theory
[J]. The Journal of Chemical Physics, 1939, 7(12): 1103-1112.

 


[27]Quan G Z, Wu D S, Luo G C, et al. Dynamic recrystallization kinetics in α phase of as-cast Ti-6Al-2Zr-1Mo-1V alloy during compression at different temperatures and strain rates
[J]. Materials Science and Engineering A,2014, 589:23-33.

 


[28]Jonas J J, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization
[J]. Acta Materialia, 2009, 57(9): 2748-2756.

 


[29]康颖安, 张俊彦, 谭加才. 相对密度对泡沫铝力学性能和能量吸收性能的影响
[J]. 功能材料, 2006,37(2): 247-249.

 

Kang Y A, Zhang J Y, Tan J C. Effect of relative density on the compressive property and energy absorption capacity of aluminum foams
[J]. Journal of Functional Materials, 2006, 37(2): 247-249.

 


[30]Poliak E I, Jonas J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization
[J]. Acta Materialia, 1996, 44(1): 127-136.

 


[31]黄天伦. LNG罐9Ni钢大型封头冲压模拟与实验研究
[D]. 常州:常州大学, 2021.

 

Huang T L. Simulation and Experimental Research on Stamping of 9Ni for Steel Large Head of LNG Tank
[D]. Changzhou:Changzhou University, 2021.

 


[32]Sellars C M. Modelling microstructural development during hot rolling
[J]. Materials Science and Technology, 1990, 6(11): 1072-1081.

 


[33]Sellars M C, Whiteman A J. Recrystallization and grain growth in hot rolling
[J]. Metal Science, 1979, 13A(3-4): 187-194.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9