[1]陈源,李淑慧,李永丰,等.TA15钛合金应力松弛行为宏微耦合本构建模 [J].机械工程学报,2022,58(12):64-74.
Chen Y, Li S H, Li Y F, et al. Macromicro coupled constitutive modeling for stress relaxation behavior of TA15 alloy sheet [J]. Journal of Mechanical Engineering, 2022,58(12):64-74.
[2]Wu H L, Sun Z C, Cao J, et al. Formation and evolution of trimodal microstructure during dual heat treatment for TA15 Tialloy [J]. Journal of Alloys and Compounds, 2019, 786: 894-905.
[3]齐铭,安震,张凯,等.热处理对锻压TA15钛合金棒组织和性能的调控 [J].锻压技术,2022,47(8):193-199.
Qi M, An Z, Zhang K, et al. Regulation of heat treatment on microstructure and properties of forged TA15 titanium alloy bar [J]. Forging & Stamping Technology, 2022,47(8):193-199.
[4]Hao F, Xiao J F, Feng Y, et al. Tensile deformation behavior of a nearα titanium alloy Ti-6Al-2Zr-1Mo-1V under a wide temperature range [J]. Journal of Materials Research and Technology, 2020, 9(3): 2818-2831.
[5]Zhao H J, Wang B Y, Ju D Y, et al. Hot tensile deformation behavior and globularization mechanism of bimodal microstructured Ti-6Al-2Zr-1Mo-1V alloy [J]. Transactions of Nonferrous Metals Society of China (English Edition), 2018, 28(12): 2449-2459.
[6]Fan X G, Yang H, Gao P F. Prediction of constitutive behavior and microstructure evolution in hot deformation of TA15 titanium alloy [J]. Materials and Design, 2013, 51: 34-42.
[7]Liu G, Wang K H, He B B, et al. Mechanism of saturated flow stress during hot tensile deformation of a TA15 Ti alloy [J]. Materials and Design, 2015, 86: 146-151.
[8]Zhao J, Lyu L X, Liu G, et al. Analysis of deformation inhomogeneity and slip mode of TA15 titanium alloy sheets during the hot tensile process based on crystal plasticity model [J]. Materials Science & Engineering A, 2017, 707(8): 30-39.
[9]Zhao J, Lyu L, Wang K H, et al. Effects of strain state and slip mode on the texture evolution of a nearα TA15 titanium alloy during hot deformation based on crystal plasticity method [J]. Journal of Materials Science and Technology, 2020, 38: 125-134.
[10]Gao P F, Zhan M, Fan X G, et al. Hot deformation behavior and microstructure evolution of TA15 titanium alloy with nonuniform microstructure [J]. Materials Science & Engineering A, 2017, 689(2): 243-251.
[11]Lou M, Alpas A T. High temperature wear mechanisms in thermally oxidized titanium alloys for engine valve applications [J]. Wear, 2019, 426-427(11): 443-453.
[12]Mengis L, Grimme C, Galetz M C. Hightemperature sliding wear behavior of an intermetallic γbased TiAl alloy [J]. Wear, 2019, 426-427(11): 341-347.
[13]Zhang Z N, Li Z, Pan S H, et al. Enhanced strength and hightemperature wear resistance of Ti6Al4V alloy fabricated by laser solid forming [J]. Journal of Manufacturing Science and Engineering, 2022, 144(11): 1-11.
[14]Mao Y S, Wang L, Chen K M, et al. Tribolayer and its role in dry sliding wear of Ti-6Al-4V alloy [J]. Wear, 2013, 297(1-2): 1032-1039.
[15]GB/T 228.2—2015,金属材料拉伸试验第2部分:高温试验方法 [S].
GB/T 228.2—2015,Metallic materials—Tensile testing—Part 2:Method of test at elevated temperature [S].
[16]GB/T 3960—2016, 塑料 滑动摩擦磨损试验方法 [S].
GB/T 3960—2016, Plastics—Test method for friction and wear by sliding [S].
[17]牟建伟,于传军,汤海波,等.激光增材连接TA15钛合金显微组织及力学性能研究 [J].中国激光,2023,50(16):221-228.
Mou J W, Yu C J, Tang H B, et al. Microstructure and mechanical properties of TA15 titanium component manufactured via laser additive connection [J]. Chinese Journal of Lasers, 2023,50(16):221-228.
[18]Feng Y J, Cui G R, Zhang W C, et al. High temperature tensile fracture characteristics of the oriented TiB whisker reinforced TA15 matrix composites fabricated by presintering and canned extrusion [J]. Journal of Alloys and Compounds, 2018, 738: 164-172.
[19]黄立国,庄伟彬,高志玉.Ti-6Al-4V-0.1B钛合金的热压缩变形行为 [J].稀有金属,2023,47(4):512-519.
Huang L G, Zhuang W B, Gao Z Y. Compression deformation behavior of Ti-6Al-4V-0.1B titanium alloy at elevated temperature [J]. Chinese Journal of Rare Metals, 2023,47(4):512-519.
[20]Shin D H, Kim I, Kim J, et al. Microstructure development during equalchannel angular pressing of titanium [J]. Acta Materialia, 2003, 51(4): 983-996.
|