网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TA15钛合金广域温度下的力学性能
英文标题:Mechanical properties of TA15 titanium alloy at a wide range of temperatures
作者:魏世龙1 裴继斌1  2 
单位:(1.吉林铁道职业技术学院 铁道机车车辆学院 吉林 吉林 132299   2.大连理工大学 材料科学与工程学院 辽宁 大连 116023) 
关键词:TA15钛合金 高温拉伸 高温磨损 力学性能 断裂 
分类号:TG163
出版年,卷(期):页码:2024,49(12):188-197
摘要:

 为探究TA15钛合金的服役性能,系统地分析了TA15钛合金在室温至800 ℃广域温度范围内的拉伸和磨损性能,以及合金的微观组织和磨损形貌。试验结果表明:在加载速度为1 mm·min-1时,TA15钛合金的抗拉强度随温度升高而显著降低,所有测试温度下的试样均表现为韧性断裂;特别是在600 ℃以上时,TA15钛合金展现出极高的延展性和塑性;在600 ℃时,TA15钛合金不仅具有较高的抗拉强度,还具有最低的摩擦因数,这使得其成为高温服役环境下的理想材料。研究得到不同温度对TA15钛合金拉伸断口表面、磨损机制和微观结构的影响规律,为TA15钛合金的高温性能研究提供了参考。

 

 Abstract: In order to explore the service performance of TA15 titanium alloy, the tensile and wear properties of TA15 titanium alloy  at a wide area temperature from room temperature to 800 ℃ were systematically analyzed. Then, the microstructure and wear morphology of the alloy were analyzed. The experimental results show that the tensile strength of TA15 titanium alloy significantly decreases with the increasing of temperature at the loading speed of 1 mm·min-1 , and all test samples at all temperatures exhibit the ductile fracture. Especially above 600 ℃, TA15 titanium alloy exhibits extremely high ductility and plasticity. At 600 ℃, TA15 titanium alloy not only has high tensile strength, but also presents the lowest friction factor, making it an ideal material for high-temperature service environments. The influence laws of different temperatures on the tensile fracture surface, wear mechanisms and microstructure of TA15 titanium alloy are obtained, contributing the reference to the study of the high-temperature properties for TA15 titanium alloy.

 
基金项目:
基金项目:2022年度吉林省高教科研课题(JGJX2022D721);第二批国家级职业教育教师教学创新团队课题研究项目(ZI2021090306)
作者简介:
作者简介:魏世龙(1985-),男,学士,副教授 E-mail:peijb@sina.com
参考文献:

 
[1]陈源,李淑慧,李永丰,等.TA15钛合金应力松弛行为宏微耦合本构建模
[J].机械工程学报,2022,58(12):64-74.


 

Chen Y, Li S H, Li Y F, et al. Macromicro coupled constitutive modeling for stress relaxation behavior of TA15 alloy sheet
[J]. Journal of Mechanical Engineering, 2022,58(12):64-74.

 


[2]Wu H L, Sun Z C, Cao J, et al. Formation and evolution of trimodal microstructure during dual heat treatment for TA15 Tialloy
[J]. Journal of Alloys and Compounds, 2019, 786: 894-905. 

 


[3]齐铭,安震,张凯,等.热处理对锻压TA15钛合金棒组织和性能的调控
[J].锻压技术,2022,47(8):193-199.

 

Qi M, An Z, Zhang K, et al. Regulation of heat treatment on microstructure and properties of forged TA15 titanium alloy bar
[J]. Forging & Stamping Technology, 2022,47(8):193-199.

 


[4]Hao F, Xiao J F, Feng Y, et al. Tensile deformation behavior of a nearα titanium alloy Ti-6Al-2Zr-1Mo-1V under a wide temperature range
[J]. Journal of Materials Research and Technology, 2020, 9(3): 2818-2831. 

 


[5]Zhao H J, Wang B Y, Ju D Y, et al. Hot tensile deformation behavior and globularization mechanism of bimodal microstructured Ti-6Al-2Zr-1Mo-1V alloy
[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2018, 28(12): 2449-2459. 

 


[6]Fan X G, Yang H, Gao P F. Prediction of constitutive behavior and microstructure evolution in hot deformation of TA15 titanium alloy
[J]. Materials and Design, 2013, 51: 34-42. 

 


[7]Liu G, Wang K H, He B B, et al. Mechanism of saturated flow stress during hot tensile deformation of a TA15 Ti alloy
[J]. Materials and Design, 2015, 86: 146-151. 

 


[8]Zhao J, Lyu L X, Liu G, et al. Analysis of deformation inhomogeneity and slip mode of TA15 titanium alloy sheets during the hot tensile process based on crystal plasticity model
[J]. Materials Science & Engineering A, 2017, 707(8): 30-39. 

 


[9]Zhao J, Lyu L, Wang K H, et al. Effects of strain state and slip mode on the texture evolution of a nearα TA15 titanium alloy during hot deformation based on crystal plasticity method
[J]. Journal of Materials Science and Technology, 2020, 38: 125-134. 

 


[10]Gao P F, Zhan M, Fan X G, et al. Hot deformation behavior and microstructure evolution of TA15 titanium alloy with nonuniform microstructure
[J]. Materials Science & Engineering A, 2017, 689(2): 243-251. 

 


[11]Lou M, Alpas A T. High temperature wear mechanisms in thermally oxidized titanium alloys for engine valve applications
[J]. Wear, 2019, 426-427(11): 443-453. 

 


[12]Mengis L, Grimme C, Galetz M C. Hightemperature sliding wear behavior of an intermetallic γbased TiAl alloy
[J]. Wear, 2019, 426-427(11): 341-347. 

 


[13]Zhang Z N, Li Z, Pan S H, et al. Enhanced strength and hightemperature wear resistance of Ti6Al4V alloy fabricated by laser solid forming
[J]. Journal of Manufacturing Science and Engineering, 2022, 144(11): 1-11.

 


[14]Mao Y S, Wang L, Chen K M, et al. Tribolayer and its role in dry sliding wear of Ti-6Al-4V alloy
[J]. Wear, 2013, 297(1-2): 1032-1039.

 


[15]GB/T 228.2—2015,金属材料拉伸试验第2部分:高温试验方法
[S].

 

GB/T 228.2—2015,Metallic materials—Tensile testing—Part 2:Method of test at elevated temperature
[S].

 


[16]GB/T 3960—2016, 塑料 滑动摩擦磨损试验方法
[S].

 

GB/T 3960—2016, Plastics—Test method for friction and wear by sliding
[S].

 


[17]牟建伟,于传军,汤海波,等.激光增材连接TA15钛合金显微组织及力学性能研究
[J].中国激光,2023,50(16):221-228.

 

Mou J W, Yu C J, Tang H B, et al. Microstructure and mechanical properties of TA15 titanium component manufactured via laser additive connection
[J]. Chinese Journal of Lasers, 2023,50(16):221-228.

 

 


[18]Feng Y J, Cui G R, Zhang W C, et al. High temperature tensile fracture characteristics of the oriented TiB whisker reinforced TA15 matrix composites fabricated by presintering and canned extrusion
[J]. Journal of Alloys and Compounds, 2018, 738: 164-172. 

 


[19]黄立国,庄伟彬,高志玉.Ti-6Al-4V-0.1B钛合金的热压缩变形行为
[J].稀有金属,2023,47(4):512-519.

 

Huang L G, Zhuang W B, Gao Z Y. Compression deformation behavior of Ti-6Al-4V-0.1B titanium alloy at elevated temperature
[J]. Chinese Journal of Rare Metals, 2023,47(4):512-519.

 


[20]Shin D H, Kim I, Kim J, et al. Microstructure development during equalchannel angular pressing of titanium
[J]. Acta Materialia, 2003, 51(4): 983-996. 

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9